期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An Effective Image Retrieval Mechanism Using Family-based Spatial Consistency Filtration with Object Region 被引量:1
1
作者 Jing Sun Ying-Jie Xing School of Mechanical Engineering, Dalian University of Technology, Dalian 116023, PRC 《International Journal of Automation and computing》 EI 2010年第1期23-30,共8页
How to construct an appropriate spatial consistent measurement is the key to improving image retrieval performance. To address this problem, this paper introduces a novel image retrieval mechanism based on the family ... How to construct an appropriate spatial consistent measurement is the key to improving image retrieval performance. To address this problem, this paper introduces a novel image retrieval mechanism based on the family filtration in object region. First, we supply an object region by selecting a rectangle in a query image such that system returns a ranked list of images that contain the same object, retrieved from the corpus based on 100 images, as a result of the first rank. To further improve retrieval performance, we add an efficient spatial consistency stage, which is named family-based spatial consistency filtration, to re-rank the results returned by the first rank. We elaborate the performance of the retrieval system by some experiments on the dataset selected from the key frames of "TREC Video Retrieval Evaluation 2005 (TRECVID2005)". The results of experiments show that the retrieval mechanism proposed by us has vast major effect on the retrieval quality. The paper also verifies the stability of the retrieval mechanism by increasing the number of images from 100 to 2000 and realizes generalized retrieval with the object outside the dataset. 展开更多
关键词 Content-based image retrieval object region family-based spatial consistency filtration local affine invariant feature spatial relationship.
下载PDF
Design of Content-Based Retrieval System in Remote Sensing Image Database 被引量:1
2
作者 LI Feng ZENG Zhiming HU Yanfeng FU Kun 《Geo-Spatial Information Science》 2006年第3期191-195,共5页
To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image applicat... To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed. 展开更多
关键词 content-based retrieval remote sensing image image database feature extraction object region
下载PDF
Automatic Video Segmentation Algorithm by Background Model and Color Clustering
3
作者 沙芸 王军 刘玉树 《Journal of Beijing Institute of Technology》 EI CAS 2003年第S1期134-138,共5页
In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: backgroun... In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: background restoration, moving objects extract, moving objects region clustering and post processing. The threshold of the background restoration is not given in advanced. It can be gotten automatically. And a new object region cluster algorithm based on background model and color clustering to remove significance noise is proposed. An efficient method of eliminating shadow is also used. This approach was compared with other methods on pixel error ratio. The experiment result indicates the algorithm is correct and efficient. 展开更多
关键词 video segmentation background restoration object region cluster
下载PDF
Objectness Region Enhancement Networks for Scene Parsing
4
作者 Xin-Yu Ou Ping Li +2 位作者 He-Fei Ling Si Liu Tian-Jiang Wang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第4期683-700,共18页
Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep ... Semantic segmentation has recently witnessed rapid progress, but existing methods only focus on identifying objects or instances. In this work, we aim to address the task of semantic understanding of scenes with deep learning. Different from many existing methods, our method focuses on putting forward some techniques to improve the existing algorithms, rather than to propose a whole new framework. Objectness enhancement is the first effective technique. It exploits the detection module to produce object region proposals with category probability, and these regions are used to weight the parsing feature map directly. 'Extra background' category, as a specific category, is often attached to the category space for improving parsing result in semantic and instance segmentation tasks. In scene parsing tasks, extra background category is still beneficial to improve the model in training. However, some pixels may be assigned into this nonexistent category in inference. Black-hole filling technique is proposed to avoid the incorrect classification. For verifying these two techniques, we integrate them into a parsing framework for generating parsing result. We call this unified framework as Objectness Enhancement Network (OENet). Compared with previous work, our proposed OENet system effectively improves the performance over the original model on SceneParse150 scene parsing dataset, reaching 38.4 mIoU (mean intersection-over-union) and 77.9% accuracy in the validation set without assembling multiple models. Its effectiveness is also verified on the Cityscapes dataset. 展开更多
关键词 objectness region enhancement black-hole filling scene parsing instance enhancement objectness region proposal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部