The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific explora...The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific exploration of Chang'e-3 more targeted and scientific, and to obtain a better macro-level understanding of the geotectonic environment of the Sinus Iridum region, the tectonic elements in LQ-4 region have been studied and the typical structures were analyzed statistically using data from CE-1, Clementine, LRO and Lunar Prospector missions. Also, the mineral components and periods of mare basalt activities in the study area have been ascertained. The present study divides the tectonic units and establishes the major tectonic events and sequence of evolution in the study area based on morphology, mineral constituents, and tectonic element distribution.展开更多
Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the fol...Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the folding and lifting of the Xing-Meng Trough. The focus of thses issues is the Late Permian sedimentary environment, which is generally considered to be either an exclusively continental environment or from the closed inland sea environment in the Early to Middle stage to continental lacustrine environment in the late stage. In recent years, we have successively discovered abundant typical marine fossils (e.g., bryozoans and calcareous algae) in the Upper Permian thick limestone layer from Linxi County and Ar Horqin Banner in eastern region of Inner Mongolia and Jiutain County in Jilin Province. These significant findings have attracted the attention from fellow academics.展开更多
Molybdenum is one of the dominant minerals in China because of its rich reserves.In recent years,outstanding breakthroughs have been made in molybdenum prospecting in China,and the distribution of molybdenum deposits ...Molybdenum is one of the dominant minerals in China because of its rich reserves.In recent years,outstanding breakthroughs have been made in molybdenum prospecting in China,and the distribution of molybdenum deposits in China is found to have a "planar pattern".In general,the molybdenum deposits are concentrated in eastern China,including the largest molybdenum reserves of Henan Province.In terms of the scale of molybdenum deposits,the identified resources of the superlarge deposits are the most important,which account for about 53% of the whole country,and those of the large deposits account for about 30%,those of the medium-sized deposits account for about 14%,those of the small-sized deposits,mine spots and mineralization account for about 3%.The molybdenum deposits are mainly classified as porphyry type,skarn type,hydrothermal(vein) type and sedimentary(metamorphic) type in genesis,and the identified resources of these types account for 85.75%,8.83%,2.79%and 2.63% of the total resources respectively.Based on the statistics of precise chronology data of molybdenites Re-Os,Mo-mineralization can be divided into 6 periods in Chinese geological history,which are Precambrian(〉800 Ma),Cambrian-Silurian(540-415 Ma,Caledonian),Devonian-Permian(400-290 Ma,Hecynian),Triassic(260-200 Ma,Indosinian),Jurassic-Cretaceous(195-70 Ma,Yanshanian) and Paleogene-Neogene(65-10 Ma,Himalayan).Mo mineralization during the Yanshanian period is the strongest one,in which about 76.69% of the Chinese total identified resources was formed.The second is the Himalayan period.According to spatial-temporal distribution characteristics of molybdenum deposits,the metallogenic regularity of molybdenum deposits was preliminarily summarized,and 41 level-Ⅲ molybdenum-forming belts,13 level-Ⅱ molybdenum-forming provinces and 4 level-Ⅰ molybdenum-forming domains were ascertained in the mainland of China.There are 39 metallogenic series of and 60 sub-series of molybdenum deposits with molybdenum as the dominant metal and corresponding representative molybdenum deposits proposed.Metallogenic lineages of molybdenum deposits were also established.Spatial-temporal evolution of different types of molybdenum deposits,and the relationship between Mo-mineralization and tectonic evolution have been discussed in this paper.On this basis,the authors think that element Mo is an effective tracer for recording the crustal evolution history of China.At present,there are some problems in the exploration of Mo deposits in China,such as uneven exploration degrees in eastern and western China,shallow exploration depth,low and uneven grade,complex associated components,difficulty of mineral development and utilization,increasing costs of prospecting,and so on.According to successful experience of superficial and deep prospecting and considering also the discussion above,some suggestions are proposed for the prospecting of molybdenum deposits in the future.展开更多
基金the key project (No. 2009AA122201) under the 863 program sponsored by Ministry of Science & Technology that has funded our research
文摘The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific exploration of Chang'e-3 more targeted and scientific, and to obtain a better macro-level understanding of the geotectonic environment of the Sinus Iridum region, the tectonic elements in LQ-4 region have been studied and the typical structures were analyzed statistically using data from CE-1, Clementine, LRO and Lunar Prospector missions. Also, the mineral components and periods of mare basalt activities in the study area have been ascertained. The present study divides the tectonic units and establishes the major tectonic events and sequence of evolution in the study area based on morphology, mineral constituents, and tectonic element distribution.
基金financially supported by the National Natural Science Foundation of China (grant No.41572098)the geological survey project (grants No.121201103000161114 and 121201103000150019 ) of the China Geological Survey
文摘Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the folding and lifting of the Xing-Meng Trough. The focus of thses issues is the Late Permian sedimentary environment, which is generally considered to be either an exclusively continental environment or from the closed inland sea environment in the Early to Middle stage to continental lacustrine environment in the late stage. In recent years, we have successively discovered abundant typical marine fossils (e.g., bryozoans and calcareous algae) in the Upper Permian thick limestone layer from Linxi County and Ar Horqin Banner in eastern region of Inner Mongolia and Jiutain County in Jilin Province. These significant findings have attracted the attention from fellow academics.
基金funded by the National Natural Science Fund for Youth(Grant No.41402069)Scientific Research Fund of the China Central Non-Commercial Institute(Grant No.1305,K1022 and K1001)+1 种基金Geological Survey Program of comprehensive study of Chinese mineral geology and regional metallogenic regularity (Grant No.12120114039701,12120114039601)mineral resources potential evaluation(Grant No. 1212010633901)
文摘Molybdenum is one of the dominant minerals in China because of its rich reserves.In recent years,outstanding breakthroughs have been made in molybdenum prospecting in China,and the distribution of molybdenum deposits in China is found to have a "planar pattern".In general,the molybdenum deposits are concentrated in eastern China,including the largest molybdenum reserves of Henan Province.In terms of the scale of molybdenum deposits,the identified resources of the superlarge deposits are the most important,which account for about 53% of the whole country,and those of the large deposits account for about 30%,those of the medium-sized deposits account for about 14%,those of the small-sized deposits,mine spots and mineralization account for about 3%.The molybdenum deposits are mainly classified as porphyry type,skarn type,hydrothermal(vein) type and sedimentary(metamorphic) type in genesis,and the identified resources of these types account for 85.75%,8.83%,2.79%and 2.63% of the total resources respectively.Based on the statistics of precise chronology data of molybdenites Re-Os,Mo-mineralization can be divided into 6 periods in Chinese geological history,which are Precambrian(〉800 Ma),Cambrian-Silurian(540-415 Ma,Caledonian),Devonian-Permian(400-290 Ma,Hecynian),Triassic(260-200 Ma,Indosinian),Jurassic-Cretaceous(195-70 Ma,Yanshanian) and Paleogene-Neogene(65-10 Ma,Himalayan).Mo mineralization during the Yanshanian period is the strongest one,in which about 76.69% of the Chinese total identified resources was formed.The second is the Himalayan period.According to spatial-temporal distribution characteristics of molybdenum deposits,the metallogenic regularity of molybdenum deposits was preliminarily summarized,and 41 level-Ⅲ molybdenum-forming belts,13 level-Ⅱ molybdenum-forming provinces and 4 level-Ⅰ molybdenum-forming domains were ascertained in the mainland of China.There are 39 metallogenic series of and 60 sub-series of molybdenum deposits with molybdenum as the dominant metal and corresponding representative molybdenum deposits proposed.Metallogenic lineages of molybdenum deposits were also established.Spatial-temporal evolution of different types of molybdenum deposits,and the relationship between Mo-mineralization and tectonic evolution have been discussed in this paper.On this basis,the authors think that element Mo is an effective tracer for recording the crustal evolution history of China.At present,there are some problems in the exploration of Mo deposits in China,such as uneven exploration degrees in eastern and western China,shallow exploration depth,low and uneven grade,complex associated components,difficulty of mineral development and utilization,increasing costs of prospecting,and so on.According to successful experience of superficial and deep prospecting and considering also the discussion above,some suggestions are proposed for the prospecting of molybdenum deposits in the future.