The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR) has been cons...The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR) has been considered for use as a landscape simulation system in which a landscape assessment object created by 3D models is included in the present surroundings. With the use of this system, the time and the cost needed to perform a 3DCG modeling of present surroundings, which is a major issue in virtual reality, are drastically reduced. This research presents the development of a 3D maporiented handheld AR system that achieves geometric consistency using a 3D map to obtain position data instead of GPS, which has tow position information accuracy, particularly in urban areas. The new system also features a gyroscope sensor to obtain posture data and a video camera to capture live video of the present surroundings. All these components are mounted in a smartphone and can be used for urban landscape assessment. Registration accuracy is evaluated to simulate an urban landscape from a short- to a long-range scale. The latter involves a distance of approximately 2000 m. The developed AR system enables users to simulate a Landscape from multiple and longdistance viewpoints simultaneously and to walk around the viewpoint fields using only a smartphone. This result is the tolerance level of Landscape assessment. In conclusion, the proposed method is evaluated as feasible and effective.展开更多
文摘The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR) has been considered for use as a landscape simulation system in which a landscape assessment object created by 3D models is included in the present surroundings. With the use of this system, the time and the cost needed to perform a 3DCG modeling of present surroundings, which is a major issue in virtual reality, are drastically reduced. This research presents the development of a 3D maporiented handheld AR system that achieves geometric consistency using a 3D map to obtain position data instead of GPS, which has tow position information accuracy, particularly in urban areas. The new system also features a gyroscope sensor to obtain posture data and a video camera to capture live video of the present surroundings. All these components are mounted in a smartphone and can be used for urban landscape assessment. Registration accuracy is evaluated to simulate an urban landscape from a short- to a long-range scale. The latter involves a distance of approximately 2000 m. The developed AR system enables users to simulate a Landscape from multiple and longdistance viewpoints simultaneously and to walk around the viewpoint fields using only a smartphone. This result is the tolerance level of Landscape assessment. In conclusion, the proposed method is evaluated as feasible and effective.