期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predicting Surface Urban Heat Island in Meihekou City, China: A Combination Method of Monte Carlo and Random Forest 被引量:3
1
作者 ZHANG Yao LIU Jiafu WEN Zhuyun 《Chinese Geographical Science》 SCIE CSCD 2021年第4期659-670,共12页
Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat i... Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat island(SUHI) in China’s Meihekou City, a combination method of Monte Carlo and Random Forest Regression(MC-RFR) is developed to construct the relationship between landscape pattern indices and Land Surface Temperature(LST). In this method, Monte Carlo acceptance-rejection sampling was added to the bootstrap layer of RFR to ensure the sensitivity of RFR to outliners of SUHI effect. The SHUI in 2030 was predicted by using this MC-RFR and the modeled future landscape pattern by Cellular Automata and Markov combination model(CA-Markov). Results reveal that forestland can greatly alleviate the impact of SUHI effect, while reasonable construction of urban land can also slow down the rising trend of SUHI. MC-RFR performs better for characterizing the relationship between landscape pattern and LST than single RFR or Linear Regression model. By 2030, the overall SUHI effect of Meihekou will be greatly enhanced, and the center of urban development will gradually shift to the central and western regions of the city. We suggest that urban designer and managers should concentrate vegetation and disperse built-up land to weaken the SUHI in the construction of new urban areas for its sustainability. 展开更多
关键词 monte carlo and Random Forest regression(MC-RFR) landscape pattern surface heat island effect Cellular Automata and Markov combination model(CA-Markov)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部