期刊文献+
共找到3,247篇文章
< 1 2 163 >
每页显示 20 50 100
Electricity price forecasting using generalized regression neural network based on principal components analysis 被引量:1
1
作者 牛东晓 刘达 邢棉 《Journal of Central South University》 SCIE EI CAS 2008年第S2期316-320,共5页
A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the mai... A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%. 展开更多
关键词 ELECTRICITY PRICE forecasting GENERALIZED regression NEURAL network principal COMPONENTS analysis
下载PDF
Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine 被引量:2
2
作者 Gwang-Hee Kim Jae-Min Shin +1 位作者 Sangyong Kim Yoonseok Shin 《Journal of Building Construction and Planning Research》 2013年第1期1-7,共7页
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin... Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects. 展开更多
关键词 ESTIMATING Construction COSTS regression analysis NEURAL network Support VECTOR MACHINE
下载PDF
Research on the Effect of Artificial Intelligence Real Estate Forecasting Using Multiple Regression Analysis and Artificial Neural Network: A Case Study of Ghana 被引量:2
3
作者 Madami Michael Ishaku Hill Isaac Lewu 《Journal of Computer and Communications》 2021年第10期1-14,共14页
To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financi... To transition from conventional to intelligent real estate, the real estate industry must enhance its embrace of disruptive technology. Even though the real estate auction market has grown in importance in the financial, economic, and investment sectors, few artificial intelligence-based research has tried to predict the auction values of real estate in the past. According to the objectives of this research, artificial intelligence and statistical methods will be used to create forecasting models for real estate auction prices. A multiple regression model and an artificial neural network are used in conjunction with one another to build the forecasting models. For the empirical study, the study utilizes data from Ghana apartment auctions from 2016 to 2020 to anticipate auction prices and evaluate the forecasting accuracy of the various models available at the time. Compared to the conventional Multiple Regression Analysis, using artificial intelligence systems for real estate appraisal is becoming a more viable option (MRA). The Artificial Neural network model exhibits the most outstanding performance, and efficient zonal segmentation based on the auction evaluation price enhances the model’s prediction accuracy even more. There is a statistically significant difference between the two models when it comes to forecasting the values of real estate auctions. 展开更多
关键词 Real Estate Forecasting Artificial Intelligence Artificial Neural networks Multiple regression analysis
下载PDF
Using Linear Regression Analysis and Defense in Depth to Protect Networks during the Global Corona Pandemic 被引量:1
4
作者 Rodney Alexander 《Journal of Information Security》 2020年第4期261-291,共31页
The purpose of this research was to determine whether the Linear Regression Analysis can be effectively applied to the prioritization of defense-in-depth security tools and procedures to reduce cyber threats during th... The purpose of this research was to determine whether the Linear Regression Analysis can be effectively applied to the prioritization of defense-in-depth security tools and procedures to reduce cyber threats during the Global Corona Virus Pandemic. The way this was determined or methods used in this study consisted of scanning 20 peer reviewed Cybersecurity Articles from prominent Cybersecurity Journals for a list of defense in depth measures (tools and procedures) and the threats that those measures were designed to reduce. The methods further involved using the Likert Scale Model to create an ordinal ranking of the measures and threats. The defense in depth tools and procedures were then compared to see whether the Likert scale and Linear Regression Analysis could be effectively applied to prioritize and combine the measures to reduce pandemic related cyber threats. The results of this research reject the H0 null hypothesis that Linear Regression Analysis does not affect the relationship between the prioritization and combining of defense in depth tools and procedures (independent variables) and pandemic related cyber threats (dependent variables). 展开更多
关键词 Information Assurance Defense in Depth Information Technology network Security CYBERSECURITY Linear regression analysis PANDEMIC
下载PDF
Modeling the Drilling Process of Aluminum Composites Using Multiple Regression Analysis and Artificial Neural Networks
5
作者 Ahmad Mayyas Awni Qasaimeh +3 位作者 Khalid Alzoubi Susan Lu Mohammed T. Hayajneh Adel M. Hassan 《Journal of Minerals and Materials Characterization and Engineering》 2012年第10期1039-1049,共11页
In recent years, aluminum-matrix composites (AMCs) have been widely used to replace cast iron in aerospace and automotive industries. Machining of these composite materials requires better understanding of cutting pro... In recent years, aluminum-matrix composites (AMCs) have been widely used to replace cast iron in aerospace and automotive industries. Machining of these composite materials requires better understanding of cutting processes re- garding accuracy and efficiency. This study addresses the modeling of the machinability of self-lubricated aluminum /alumina/graphite hybrid composites synthesized by the powder metallurgy method. In this study, multiple regression analysis (MRA) and artificial neural networks (ANN) were used to investigate the influence of some parameters on the thrust force and torque in the drilling processes of self-lubricated hybrid composite materials. The models were identi- fied by using cutting speed, feed, and volume fraction of the reinforcement particles as input data and the thrust force and torque as the output data. A comparison between two prediction methods was developed to compare the prediction accuracy. ANNs showed better predictability results compared to MRA due to the nonlinearity nature of ANNs. The statistical analysis accompanied with artificial neural network results showed that Al2O3, Gr and cutting feed (f) were the most significant parameters on the drilling process, while spindle speed seemed insignificant. Since the spindle speed was insignificant, it directed us to set it either at the highest spindle speed to obtain high material removal rate or at the lowest spindle speed to prolong the tool life depending on the need for the application. 展开更多
关键词 Artificial Neural network Metal-Matrix Composites (MMCs) Multiple regression analysis STATISTICAL Methods MACHINING
下载PDF
A Predictive Modeling Based on Regression and Artificial Neural Network Analysis of Laser Transformation Hardening for Cylindrical Steel Workpieces
6
作者 Ahmed Ghazi Jerniti Abderazzak El Ouafi Noureddine Barka 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第4期149-163,共15页
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on... Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy. 展开更多
关键词 Heat Treatment Laser Surface Hardening Hardness Predictive Modeling regression analysis Artificial Neural network Cylindrical Steel Workpieces AISI 4340 Steel Nd:Yag Laser System
下载PDF
Research on Tourism Resources Development Pattern Effect Evaluation based on Regression Analysis and Neural Network
7
作者 Yimei Xue 《International Journal of Technology Management》 2016年第8期23-25,共3页
In this paper, we conduct research on the tourism resources development pattern effect evaluation based on regression analysis andneural network. Tourism resources development and the protection of all sorts of the co... In this paper, we conduct research on the tourism resources development pattern effect evaluation based on regression analysis andneural network. Tourism resources development and the protection of all sorts of the contradictions, in the fi nal analysis is the confl ict betweenthe interests of stakeholders. Real life in China, and tourism resources development and protection of the interests of the relevant party basicallyhas the following six parties the local government, investment and the business practice, the original residents, tourists, tourism practitioners, thesocial organization. The survival and the development of general tourism industry is based on the premise of environmental protection, tourismlandscape are carefully protected, let the natural landscape and human landscape form a virtuous cycle, to attract more tourists, promote thesustainable development of scenic spots. Under this basis, this paper proposes the new idea on the issues that is meaningful. 展开更多
关键词 Tourism Resources Effect Evaluation regression analysis Neural network.
下载PDF
Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network
8
作者 王贤萍 曹贵寿 +4 位作者 杨晓华 张倩茹 李凯 李鸿雁 段泽敏 《Agricultural Science & Technology》 CAS 2015年第6期1295-1300,共6页
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad... The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy. 展开更多
关键词 WALNUT THINNING bp artificial neural network regression PREDICTION
下载PDF
Multi-Physics Coupled Acoustic-Mechanics Analysis and Synergetic Optimization for a Twin-Fluid Atomization Nozzle
9
作者 Wenying Li Yanying Li +4 位作者 Yingjie Lu Jinhuan Xu Bo Chen Li Zhang Yanbiao Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期204-223,共20页
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul... Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research. 展开更多
关键词 Twin-fluid nozzle bp neural network Multi-objective optimization Multi-physics coupled Acousticmechanics analysis Genetic algorithm
下载PDF
Stability of mine ventilation system based on multiple regression analysis 被引量:12
10
作者 JIA Ting-gui LIU Jian 《Mining Science and Technology》 EI CAS 2009年第4期463-466,共4页
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre... In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems. 展开更多
关键词 ventilation network STABILITY diagonal connection multiple regression analysis
下载PDF
Intelligent direct analysis of physical and mechanical parameters of tunnel surrounding rock based on adaptive immunity algorithm and BP neural network 被引量:3
11
作者 Xiao-rui Wang1,2, Yuan-han Wang1, Xiao-feng Jia31.School of Civil Engineering and Mechanics,Huazhong University of Science and Technology, Wuhan 430074,China 2.Department of Civil Engineering,Nanyang Institute of Technology,Nanyang 473004,China 3.Department of Chemistry and Bioengineering,Nanyang Institute of Technology,Nanyang 473004,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期22-30,共9页
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretic... Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively improved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 展开更多
关键词 adaptive immunity algorithm bp neural network physical and mechanical parameters surrounding rock direct-back analysis
下载PDF
Fault detection and diagnosis of permanent-magnetic DC motors based on current analysis and BP neural networks 被引量:1
12
作者 刘曼兰 朱春波 王铁成 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期266-270,共5页
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n... In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper. 展开更多
关键词 DC motor current analysis bp neural networks fault detection fault diagnosis
下载PDF
Analysis and Prediction of Regional Electricity Consumption Based on BP Neural Network 被引量:5
13
作者 Pingping Xia Aihua Xu Tong Lian 《Journal of Quantum Computing》 2020年第1期25-32,共8页
Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in th... Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods. 展开更多
关键词 Electricity consumption prediction bp neural network grey relational analysis
下载PDF
A quantitative BP neural network analysis of the relationships between ΣREE content and impact factors in the Beibu Gulf
14
作者 ZHANG Wen-li HU Hao +2 位作者 LONG Jiang-ping XU Dong ZHOU Meng-jia 《Marine Science Bulletin》 CAS 2017年第1期52-66,共15页
The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships bet... The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships between ΣREE content andprovenance, hydrodynamics, grain size and mineral distribution in the Beibu Gulf showsthat terrestrial rocks control the ΣREE composition. Both weaker hydrodynamics andfiner grain size lead to a higher ΣREE content. Relative curves revealing therelationships between individual impact factors and ΣREE content were obtained fromthe combination of qualitative and quantitative analyses of the BP neural network,which trained the position of samples, gravel content, sand content, silt content, claycontent and clay mineral content. The results are consistent with those of thequantitative analysis. The self-learning algorithm is automatically determined andcalculated quantitatively. The impact of each factor on REEs and how each factorcontrols the ΣREE distribution is identified. Thus, environmental changes and thegeological evolution of the region can be inferred based on curve variation and the geological evolution of the region can be inferred based on curve variation and theactual situation. This method also provides useful theoretical guidance for the analysisof REE enrichment and dispersion. 展开更多
关键词 REE impact factors quantitative analysis bp neural network controlvariable method
下载PDF
交通荷载下煤矸石路基填料累积变形PSO-BP神经网络预测模型 被引量:1
15
作者 张宗堂 肖天祥 +2 位作者 高文华 杨洋 衣利伟 《水利水电科技进展》 CSCD 北大核心 2024年第2期87-91,共5页
基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累... 基于煤矸石路基填料大型动三轴试验结果,采用灰色关联分析法分析累积变形影响因子,确定了围压、压实度、级配参数、循环荷载振动次数4个特征参数。引入PSO算法对BP神经网络的权重、阈值进行全局寻优并赋值,提出了一种煤矸石路基填料累积变形PSO-BP神经网络预测模型。与传统BP神经网络模型对比结果验证了该预测模型的可行性和优越性,并通过不同学习程度下模型的预测效果分析了模型的泛化能力,证明了模型的预测潜力。 展开更多
关键词 煤矸石路基 累积变形预测 灰色关联分析 粒子群算法 bp神经网络
下载PDF
基于改进BP神经网络的河北省碳排放预测
16
作者 王永利 李颐雯 +4 位作者 王欢 董鹏旭 滕越 蔺媛 刘琳 《生态经济》 北大核心 2024年第6期30-37,共8页
“双碳”目标背景下,针对河北省高碳经济发展模式难以改变、以往预测模型难以满足现实需求等问题。论文根据统计年鉴数据,研究河北省能源消费趋势和分行业碳排放特征,并借助脱钩指数探究河北省碳排放动态变化趋势,选取IPCC二氧化碳排放... “双碳”目标背景下,针对河北省高碳经济发展模式难以改变、以往预测模型难以满足现实需求等问题。论文根据统计年鉴数据,研究河北省能源消费趋势和分行业碳排放特征,并借助脱钩指数探究河北省碳排放动态变化趋势,选取IPCC二氧化碳排放的计算方法,基于6项碳排放量影响因素建立遗传算法(GA)优化BP神经网络的河北省碳排放模型,对河北省2021—2030年碳排放量进行仿真预测。结果显示:河北省能源效率低于全国水平,河北省工业碳排放量最高;河北省的经济增长与碳排放之间主要呈弱脱钩态势;GA-BP模型预测结果比BP模型更加稳定,误差较小,更适合用于碳排放量的预测。预测结果显示,河北省未来碳排放量呈缓慢增长趋势,以期为政府决策提供理论依据,助力河北省“双碳”目标的实现。 展开更多
关键词 碳排放预测 bp神经网络 脱钩分析 河北省
下载PDF
基于PCA-BP神经网络的巷道通风摩擦阻力系数预测模型
17
作者 高科 吕航宇 +1 位作者 戚志鹏 刘玉姣 《矿业安全与环保》 CAS 北大核心 2024年第1期7-13,共7页
根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因... 根据实测巷道通风摩擦阻力系数数据的特点,建立了主成分分析PCA-BP神经网络预测模型。采用PCA法对影响巷道通风摩擦阻力系数的支护类型、断面形状、巷道宽、巷道高、支护部分周边长、巷道断面积和巷道长度7个因素进行降维。将降维后因素的贡献率进行排序筛选,得到3个主成分指标(F_(1)、F_(2)和F_(3)),作为BP神经网络输入层的神经元。利用实测数据对PCA-BP神经网络模型进行训练和测试,并将测试结果与支持向量机回归(SVM)模型和BP神经网络模型的测试结果进行对比,结果显示:全因素的BP神经网络预测模型和SVM预测模型的平均精度分别为92.9420%、93.0235%,而PCA-BP预测模型的平均精度达到了96.4325%。PCA-BP神经网络模型不但简化了网络结构,更提高了网络的泛化能力,使预测误差更小、精度更高,为更准确地获得巷道通风摩擦阻力系数提供了一种有效的方法。 展开更多
关键词 矿井通风 巷道通风摩擦阻力系数 预测模型 PCA-bp神经网络 主成分分析 影响因素
下载PDF
基于回归分析和GA-BP神经网络算法的3D打印件弯曲性能预测
18
作者 白鹤 杨鑫 +4 位作者 杨瑞琦 刘亚明 赵峥璇 庞瑞 何石磊 《工程塑料应用》 CAS CSCD 北大核心 2024年第1期89-94,共6页
为进一步探究熔融沉积成型(FDM)3D打印参数和制件弯曲性能之间的关系,创建合理的FDM 3D打印制件弯曲强度预测模型。根据正交试验L_(16)(4^(5))的设计原则和神经网络算法模型的构建要求,按照不同分层高度、填充密度、打印温度、打印速度... 为进一步探究熔融沉积成型(FDM)3D打印参数和制件弯曲性能之间的关系,创建合理的FDM 3D打印制件弯曲强度预测模型。根据正交试验L_(16)(4^(5))的设计原则和神经网络算法模型的构建要求,按照不同分层高度、填充密度、打印温度、打印速度以及外壳厚度五种因素,制备25组试验试样,并进行弯曲性能检测。随后通过建立GA-BP神经网络模型、传统BP神经网络模型以及多元回归方程模型,分别对FDM 3D打印制件弯曲性能进行预测,并将预测数据与试验测试数据进行对比。通过对比发现,GA-BP神经网络模型预测数据与试验测试数据更为接近,其平均误差为3.71%,且误差值整体波动最小,BP神经网络模型与多元回归方程模型预测精度相差不大,BP神经网络模型预测平均误差为8.05%,多元回归方程模型预测平均误差为9.07%,但多元回归方程误差值整体波动最大。因此,采用GA遗传算法优化后的BP神经网络模型在进行FDM 3D打印制件弯曲性能预测方面具有更高的精度和更良好的稳定性。 展开更多
关键词 回归分析 GA-bp神经网络 3D打印 弯曲性能 预测
下载PDF
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
19
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
下载PDF
基于5参数GA-BP模型的出水水质预测——以宁夏某水厂为例 被引量:1
20
作者 王涛 吴福雨 +7 位作者 程紫微 王世杰 岳佳妮 樊小东 白淑叶 卢玺 肖萍 肖峰 《环境保护科学》 CAS 2024年第1期163-170,共8页
为解决饮用水处理过程中关键水质参数浊度取样检测时滞性大和精度低的问题,提出了基于遗传算法优化BP神经网络(GA-BP)的出水浊度预测模型。利用2019—2021年银川市某水厂的实测出水浊度及相关水质数据,采用灰色关联度分析对影响出水浊... 为解决饮用水处理过程中关键水质参数浊度取样检测时滞性大和精度低的问题,提出了基于遗传算法优化BP神经网络(GA-BP)的出水浊度预测模型。利用2019—2021年银川市某水厂的实测出水浊度及相关水质数据,采用灰色关联度分析对影响出水浊度的输入指标进行筛选,结合Q型聚类分析将样本数据划分为具有不同特征的3类,构建了基于GA-BP神经网络的机器学习模型对出水浊度进行预测,并与传统BP和未分类的预测结果进行对比。结果表明:与未分类相比,利用Q型聚类分析后预测模型的误差评价指标决定系数(R2)和均方根误差(RMSE)分别优化了2.9%和22%;与传统BP神经网络相比,经遗传算法优化后的预测模型误差评价指标R2和RMSE分别优化了2.4%和12%。研究表明,Q型聚类分析和遗传算法均能提高BP神经网络预测模型的泛化能力,减小误差。 展开更多
关键词 bp神经网络 遗传算法 聚类分析 灰色关联度分析 浊度预测
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部