期刊文献+
共找到153,325篇文章
< 1 2 250 >
每页显示 20 50 100
Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression 被引量:1
1
作者 DONG Wen-bo ZHOU Li +2 位作者 DING Shi-feng WANG Ai-ming CAI Jin-yan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期313-325,共13页
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ... Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second. 展开更多
关键词 ice channel ship navigation IDENTIFICATION image segmentation corner point regression
下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
2
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-Zn alloys Long-period stacking ordered First-principles calculations ENTHALPIES Mechanical properties
下载PDF
Ridge regression energy levels calculation of neutral ytterbium(Z=70)
3
作者 余雨姝 杨晨 蒋刚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期196-204,共9页
In view of the difficulty in calculating the atomic structure parameters of high-Z elements,the Hartree–Fock with relativistic corrections(HFR)theory in combination with the ridge regression(RR)algorithm rather than ... In view of the difficulty in calculating the atomic structure parameters of high-Z elements,the Hartree–Fock with relativistic corrections(HFR)theory in combination with the ridge regression(RR)algorithm rather than the Cowan code’s least squares fitting(LSF)method is proposed and applied.By analyzing the energy level structure parameters of the HFR theory and using the fitting experimental energy level extrapolation method,some excited state energy levels of the Yb I(Z=70)atom including the 4f open shell are calculated.The advantages of the ridge regression algorithm are demonstrated by comparing it with Cowan code’s LSF results.In addition,the results obtained by the new method are compared with the experimental results and other theoretical results to demonstrate the reliability and accuracy of our approach. 展开更多
关键词 atomic data YTTERBIUM energy levels ridge regression algorithm
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
4
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
A comparison of model choice strategies for logistic regression
5
作者 Markku Karhunen 《Journal of Data and Information Science》 CSCD 2024年第1期37-52,共16页
Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/appr... Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties. 展开更多
关键词 Model choice Logistic regression Logit regression Monte Carlo simulations Sensitivity SPECIFICITY
下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
6
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization Gaussian Process regression(GPR) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
下载PDF
Regression analysis and its application to oil and gas exploration:A case study of hydrocarbon loss recovery and porosity prediction,China
7
作者 Yang Li Xiaoguang Li +3 位作者 Mingyu Guo Chang Chen Pengbo Ni Zijian Huang 《Energy Geoscience》 EI 2024年第4期240-252,共13页
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not... In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery. 展开更多
关键词 regression analysis Oil and gas exploration Multiple linear regression model Nonlinear regression model Hydrocarbon loss recovery Porosity prediction
下载PDF
Random Green's Function Method for Large-Scale Electronic Structure Calculation
8
作者 汤明发 刘畅 +4 位作者 张爱霞 张青云 翟佳羽 袁声军 柯友启 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期23-29,共7页
We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projec... We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation. 展开更多
关键词 calculation FUNCTION METHOD
下载PDF
Performance Enhancement of XML Parsing Using Regression and Parallelism
9
作者 Muhammad Ali Minhaj Ahmad Khan 《Computer Systems Science & Engineering》 2024年第2期287-303,共17页
The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Obj... The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Object Model(DOM)based parsing,the performance degrades due to sequential processing and large memory requirements,thereby requiring an efficient XML parser to mitigate these issues.In this paper,we propose a Parallel XML Tree Generator(PXTG)algorithm for accelerating the parsing of XML files and a Regression-based XML Parsing Framework(RXPF)that analyzes and predicts performance through profiling,regression,and code generation for efficient parsing.The PXTG algorithm is based on dividing the XML file into n parts and producing n trees in parallel.The profiling phase of the RXPF framework produces a dataset by measuring the performance of various parsing models including StAX,SAX,DOM,JDOM,and PXTG on different cores by using multiple file sizes.The regression phase produces the prediction model,based on which the final code for efficient parsing of XML files is produced through the code generation phase.The RXPF framework has shown a significant improvement in performance varying from 9.54%to 32.34%over other existing models used for parsing XML files. 展开更多
关键词 regression parallel parsing multi-cores XML
下载PDF
Emerging perovskite materials for supercapacitors:Structure,synthesis,modification,advanced characterization,theoretical calculation and electrochemical performance
10
作者 Yuehua Qian Qingqing Ruan +1 位作者 Mengda Xue Lingyun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期41-70,I0003,共31页
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r... As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction. 展开更多
关键词 PEROVSKITE Modification engineering Oxygen vacancy Theoretical calculation methodology SUPERCAPACITOR
下载PDF
A regression approach for seismic first-break picking
11
作者 Huan Yuan San-Yi Yuan +2 位作者 Jie Wu Wen-Jing Sang Yu-He Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1584-1596,共13页
The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-nois... The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application. 展开更多
关键词 First-break picking Low signal-to-noiseratio regression BiLSTM TRAVELTIME Geometry Noisy seismic data
下载PDF
Geographically and Temporally Weighted Regression in Assessing Dengue Fever Spread Factors in Yunnan Border Regions
12
作者 ZHU Xiao Xiang WANG Song Wang +3 位作者 LI Yan Fei ZHANG Ye Wu SU Xue Mei ZHAO Xiao Tao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第5期511-520,共10页
Objective This study employs the Geographically and Temporally Weighted Regression(GTWR)model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks,emphasizing the spatial-tempor... Objective This study employs the Geographically and Temporally Weighted Regression(GTWR)model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks,emphasizing the spatial-temporal variability of these factors in border regions.Methods We conducted a descriptive analysis of dengue fever’s temporal-spatial distribution in Yunnan border areas.Utilizing annual data from 2013 to 2019,with each county in the Yunnan border serving as a spatial unit,we constructed a GTWR model to investigate the determinants of dengue fever and their spatio-temporal heterogeneity in this region.Results The GTWR model,proving more effective than Ordinary Least Squares(OLS)analysis,identified significant spatial and temporal heterogeneity in factors influencing dengue fever’s spread along the Yunnan border.Notably,the GTWR model revealed a substantial variation in the relationship between indigenous dengue fever incidence,meteorological variables,and imported cases across different counties.Conclusion In the Yunnan border areas,local dengue incidence is affected by temperature,humidity,precipitation,wind speed,and imported cases,with these factors’influence exhibiting notable spatial and temporal variation. 展开更多
关键词 Dengue fever Meteorological factor Geographically and temporally weighted regression
下载PDF
Nuclear charge radius predictions by kernel ridge regression with odd-even effects
13
作者 Lu Tang Zhen-Hua Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期94-102,共9页
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(... The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method. 展开更多
关键词 Nuclear charge radius Machine learning Kernel ridge regression method
下载PDF
Predicting uniaxial compressive strength of tuff after accelerated freeze-thaw testing: Comparative analysis of regression models and artificial neural networks
14
作者 Ogün Ozan VAROL 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3521-3535,共15页
Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern const... Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern construction as well. However, ignimbrites are particularly vulnerable to atmospheric conditions, such as freeze-thaw cycles, due to their high porosity, which is a result of their formation process. When water enters the pores of the ignimbrites, it can freeze during cold weather. As the water freezes and expands, it generates internal stress within the stone, causing micro-cracks to develop. Over time, repeated freeze-thaw (F-T) cycles lead to the growth of these micro-cracks into larger cracks, compromising the structural integrity of the ignimbrites and eventually making them unsuitable for use as building materials. The determination of the long-term F-T performance of ignimbrites can be established after long F-T experimental processes. Determining the long-term F-T performance of ignimbrites typically requires extensive experimental testing over prolonged freeze-thaw cycles. To streamline this process, developing accurate predictive equations becomes crucial. In this study, such equations were formulated using classical regression analyses and artificial neural networks (ANN) based on data obtained from these experiments, allowing for the prediction of the F-T performance of ignimbrites and other similar building stones without the need for lengthy testing. In this study, uniaxial compressive strength, ultrasonic propagation velocity, apparent porosity and mass loss of ignimbrites after long-term F-T were determined. Following the F-T cycles, the disintegration rate was evaluated using decay function approaches, while uniaxial compressive strength (UCS) values were predicted with minimal input parameters through both regression and ANN analyses. The ANN and regression models created for this purpose were first started with a single input value and then developed with two and three combinations. The predictive performance of the models was assessed by comparing them to regression models using the coefficient of determination (R2) as the evaluation criterion. As a result of the study, higher R2 values (0.87) were obtained in models built with artificial neural network. The results of the study indicate that ANN usage can produce results close to experimental outcomes in predicting the long-term F-T performance of ignimbrite samples. 展开更多
关键词 IGNIMBRITE Uniaxial compressive strength FREEZE-THAW Decay function regression Artificial neural network
下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
15
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization Logistic regression Model K-Means Clustering Analysis Elbow Rule Parameter Verification
下载PDF
First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review
16
作者 Muhammad Abdullah Khan Muhammad Usman Yuhong Zhao 《Computers, Materials & Continua》 SCIE EI 2024年第11期1905-1952,共48页
This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-pri... This comprehensive review examines the structural,mechanical,electronic,and thermodynamic properties of Mg-Li-Al alloys,focusing on their corrosion resistance and mechanical performance enhancement.Utilizing first-principles calculations based on Density Functional Theory(DFT)and the quasi-harmonic approximation(QHA),the combined properties of the Mg-Li-Al phase are explored,revealing superior incompressibility,shear resistance,and stiffness compared to individual elements.The review highlights the brittleness of the alloy,supported by B/G ratios,Cauchy pressures,and Poisson’s ratios.Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics,while Mulliken population analysis emphasizes significant electron transfer within the alloy.This paper also studied thermodynamic properties,including Debye temperature,heat capacity,enthalpy,free energy,and entropy,which are precisely examined,highlighting the Mg-Li-Al phase sensitive to thermal conductivity and thermal performance potential.Phonon density of states(PHDOS)confirms dynamic stability,while anisotropic sound velocities reveal elastic anisotropies.This comprehensive review not only consolidates the current understanding of the Mg-Li-Al alloy’s properties but also proposes innovative strategies for enhancing corrosion resistance.Among these strategies is the introduction of a corrosion barrier akin to the Mg-Li-Al network,which holds promise for advancing both the applications and performance of these alloys.This review serves as a crucial foundation for future research aimed at optimizing alloy design and processing methods. 展开更多
关键词 First-principles calculations Mg-Li-Al alloys corrosion resistance thermodynamic properties mechanical properties
下载PDF
Nonparametric Feature Screening via the Variance of the Regression Function
17
作者 Won Chul Song Michael G. Akritas 《Open Journal of Statistics》 2024年第4期413-438,共26页
This article develops a procedure for screening variables, in ultra high-di- mensional settings, based on their predictive significance. This is achieved by ranking the variables according to the variance of their res... This article develops a procedure for screening variables, in ultra high-di- mensional settings, based on their predictive significance. This is achieved by ranking the variables according to the variance of their respective marginal regression functions (RV-SIS). We show that, under some mild technical conditions, the RV-SIS possesses a sure screening property, which is defined by Fan and Lv (2008). Numerical comparisons suggest that RV-SIS has competitive performance compared to other screening procedures, and outperforms them in many different model settings. 展开更多
关键词 Sure Independence Screening Nonparametric regression Ultrahigh-Dimensional Data Variable Selection
下载PDF
Regression Method for Rail Fastener Tightness Based on Center-Line Projection Distance Feature and Neural Network
18
作者 Yuanhang Wang Duxin Liu +4 位作者 Sheng Guo Yifan Wu Jing Liu Wei Li Hongjie Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期356-371,共16页
In the railway system,fasteners have the functions of damping,maintaining the track distance,and adjusting the track level.Therefore,routine maintenance and inspection of fasteners are important to ensure the safe ope... In the railway system,fasteners have the functions of damping,maintaining the track distance,and adjusting the track level.Therefore,routine maintenance and inspection of fasteners are important to ensure the safe operation of track lines.Currently,assessment methods for fastener tightness include manual observation,acoustic wave detection,and image detection.There are limitations such as low accuracy and efficiency,easy interference and misjudgment,and a lack of accurate,stable,and fast detection methods.Aiming at the small deformation characteristics and large elastic change of fasteners from full loosening to full tightening,this study proposes high-precision surface-structured light technology for fastener detection and fastener deformation feature extraction based on the center-line projection distance and a fastener tightness regression method based on neural networks.First,the method uses a 3D camera to obtain a fastener point cloud and then segments the elastic rod area based on the iterative closest point algorithm registration.Principal component analysis is used to calculate the normal vector of the segmented elastic rod surface and extract the point on the centerline of the elastic rod.The point is projected onto the upper surface of the bolt to calculate the projection distance.Subsequently,the mapping relationship between the projection distance sequence and fastener tightness is established,and the influence of each parameter on the fastener tightness prediction is analyzed.Finally,by setting up a fastener detection scene in the track experimental base,collecting data,and completing the algorithm verification,the results showed that the deviation between the fastener tightness regression value obtained after the algorithm processing and the actual measured value RMSE was 0.2196 mm,which significantly improved the effect compared with other tightness detection methods,and realized an effective fastener tightness regression. 展开更多
关键词 Railway system Fasteners Tightness inspection Neural network regression 3D point cloud processing
下载PDF
Predicting Purchasing Behavior on E-Commerce Platforms: A Regression Model Approach for Understanding User Features that Lead to Purchasing
19
作者 Abraham Jallah Balyemah Sonkarlay J. Y. Weamie +2 位作者 Jiang Bin Karmue Vasco Jarnda Felix Jwakdak Joshua 《International Journal of Communications, Network and System Sciences》 2024年第6期81-103,共23页
This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the... This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms. 展开更多
关键词 E-Commerce Platform Purchasing Behavior Prediction Logistic regression Algorithm
下载PDF
Organic Compounds Possessing the Plastic Crystalline Phase: Calculation of Their Fusion Enthalpies
20
作者 Mikhail Yu. Gorbachev Natalia N. Gorinchoy 《International Journal of Organic Chemistry》 2024年第3期93-106,共14页
For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti... For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase. 展开更多
关键词 Fusion Enthalpies calculation Organic Compounds Inorganic Compounds Plastic Crystalline Phases
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部