As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this p...As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching.展开更多
This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid ...This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.展开更多
In the network technology era, the collected data are growing more and more complex, and become larger than before. In this article, we focus on estimates of the linear regression parameters for symbolic interval data...In the network technology era, the collected data are growing more and more complex, and become larger than before. In this article, we focus on estimates of the linear regression parameters for symbolic interval data. We propose two approaches to estimate regression parameters for symbolic interval data under two different data models and compare our proposed approaches with the existing methods via simulations. Finally, we analyze two real datasets with the proposed methods for illustrations.展开更多
基金Sponsored by the National 11th 5-year Plan Key Project of Ministry of Science and Technology of China (Grant No.2006BAJ01A04)
文摘As the existing heating load forecasting methods are almostly point forecasting,an interval forecasting approach based on Support Vector Regression (SVR) and interval estimation of relative error is proposed in this paper.The forecasting output can be defined as energy saving control setting value of heating supply substation;meanwhile,it can also provide a practical basis for heating dispatching and peak load regulating operation.By means of the proposed approach,SVR model is used to point forecasting and the error interval can be gained by using nonparametric kernel estimation to the forecast error,which avoid the distributional assumptions.Combining the point forecasting results and error interval,the forecast confidence interval is obtained.Finally,the proposed model is performed through simulations by applying it to the data from a heating supply network in Harbin,and the results show that the method can meet the demands of energy saving control and heating dispatching.
文摘This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model.
文摘In the network technology era, the collected data are growing more and more complex, and become larger than before. In this article, we focus on estimates of the linear regression parameters for symbolic interval data. We propose two approaches to estimate regression parameters for symbolic interval data under two different data models and compare our proposed approaches with the existing methods via simulations. Finally, we analyze two real datasets with the proposed methods for illustrations.