The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements.Such rings shall be called ri...The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements.Such rings shall be called right exp-DR.We investigate the structures of group rings,right quotient rings,matrix rings and(skew)polynomial rings,through the study of right exp-DR rings.In addition,we provide a method of constructing finite non-abelian p-groups for any prime p.展开更多
In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new...In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new results about VNL-rings and GVNL-ringsare also given.展开更多
An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary ...An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.展开更多
The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G);...The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G); if g ∈ G^0 - H^0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on 9. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G^0 - H^0.展开更多
A ring is said to be right (resp., left) regular-duo if every right (resp., left) regular element is regular. The structure of one-sided regular elements is studied in various kinds of rings, especially, upper tri...A ring is said to be right (resp., left) regular-duo if every right (resp., left) regular element is regular. The structure of one-sided regular elements is studied in various kinds of rings, especially, upper triangular matrix rings over one-sided Ore domains. We study the structure of (one-sided) regular-duo rings, and the relations between one-sided regular-duo rings and related ring theoretic properties.展开更多
Let ΡΥ(X) be the semigroup of all partial transformations on X, Υ(X) and Ι(X) be the subsemigroups of ΡΥ(X) of all full transformations on X and of all injective partial transformations on X, respectivel...Let ΡΥ(X) be the semigroup of all partial transformations on X, Υ(X) and Ι(X) be the subsemigroups of ΡΥ(X) of all full transformations on X and of all injective partial transformations on X, respectively. Given a non-empty subset Y of X, let ΡΥ(X, Y) = {α∈ ΡΥ(X) : Xα Y}, Υ(X, Y) = ΡΥ(X, Y) ∩Υ(X) and Ι(X, Y) = ΡΥ(X, Y) ∩ Ι(X). In 2008, Sanwong and Sommanee described the largest regular subsemigroup and determined Green's relations of Υ(X,Y). In this paper, we present analogous results for bothΡ Υ(X, Y) and Ι(X, Y). For a finite set X with |x|≥ 3, the ranks of ΡΥ(X) = ΡΥ(X, X), Υ(X) = Υ(X, X) and.Ι(X) = Ι(X, X) are well known to be 4, 3 and 3, respectively. In this paper, we also compute the ranks of ΡΥ(X,Y), Υ(X, Y) and Ι(X, Y) for any proper non-empty subset Y of X.展开更多
Let Tx be the full transformation semigroup on a set X. For a non-trivial equivalence F on X, letTF(X) = {f ∈ Tx : arbieary (x, y) ∈ F, (f(x),f(y)) ∈ F}.Then TF(X) is a subsemigroup of Tx. Let E be ano...Let Tx be the full transformation semigroup on a set X. For a non-trivial equivalence F on X, letTF(X) = {f ∈ Tx : arbieary (x, y) ∈ F, (f(x),f(y)) ∈ F}.Then TF(X) is a subsemigroup of Tx. Let E be another equivalence on X and TFE(X) = TF(X) ∩ TE(X). In this paper, under the assumption that the two equivalences F and E are comparable and E lohtain in F, we describe the regular elements and characterize Green's relations for the semigroup TFE(X).展开更多
文摘The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements.Such rings shall be called right exp-DR.We investigate the structures of group rings,right quotient rings,matrix rings and(skew)polynomial rings,through the study of right exp-DR rings.In addition,we provide a method of constructing finite non-abelian p-groups for any prime p.
文摘In this note, a counterexample is given to show that a noncommutative VNL-ring need not be an SVNL-ring, answering an open question of Chen and Tong (Glasgow Math. J., 48(1)(2006)) negatively. Moreover, some new results about VNL-rings and GVNL-ringsare also given.
文摘An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.
基金Chen research was supported by the Doctor Foundation of Henan University of Technology (2010BS048)Tian Yuan Foundations (11126273, 11126271)
文摘The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G′O^P′(G); if g ∈ G^0 - H^0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on 9. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G^0 - H^0.
文摘A ring is said to be right (resp., left) regular-duo if every right (resp., left) regular element is regular. The structure of one-sided regular elements is studied in various kinds of rings, especially, upper triangular matrix rings over one-sided Ore domains. We study the structure of (one-sided) regular-duo rings, and the relations between one-sided regular-duo rings and related ring theoretic properties.
文摘Let ΡΥ(X) be the semigroup of all partial transformations on X, Υ(X) and Ι(X) be the subsemigroups of ΡΥ(X) of all full transformations on X and of all injective partial transformations on X, respectively. Given a non-empty subset Y of X, let ΡΥ(X, Y) = {α∈ ΡΥ(X) : Xα Y}, Υ(X, Y) = ΡΥ(X, Y) ∩Υ(X) and Ι(X, Y) = ΡΥ(X, Y) ∩ Ι(X). In 2008, Sanwong and Sommanee described the largest regular subsemigroup and determined Green's relations of Υ(X,Y). In this paper, we present analogous results for bothΡ Υ(X, Y) and Ι(X, Y). For a finite set X with |x|≥ 3, the ranks of ΡΥ(X) = ΡΥ(X, X), Υ(X) = Υ(X, X) and.Ι(X) = Ι(X, X) are well known to be 4, 3 and 3, respectively. In this paper, we also compute the ranks of ΡΥ(X,Y), Υ(X, Y) and Ι(X, Y) for any proper non-empty subset Y of X.
基金the Natural Science Found of Henan Province (No.0511010200)the Doctoral Fund of Henan Polytechnic University (No.2009A110007)the Natural Science Research Project for Education Department of Henan Province (No.2009A110007)
文摘Let Tx be the full transformation semigroup on a set X. For a non-trivial equivalence F on X, letTF(X) = {f ∈ Tx : arbieary (x, y) ∈ F, (f(x),f(y)) ∈ F}.Then TF(X) is a subsemigroup of Tx. Let E be another equivalence on X and TFE(X) = TF(X) ∩ TE(X). In this paper, under the assumption that the two equivalences F and E are comparable and E lohtain in F, we describe the regular elements and characterize Green's relations for the semigroup TFE(X).