期刊文献+
共找到300篇文章
< 1 2 15 >
每页显示 20 50 100
Regularized least-squares migration of simultaneous-source seismic data with adaptive singular spectrum analysis 被引量:12
1
作者 Chuang Li Jian-Ping Huang +1 位作者 Zhen-Chun Li Rong-Rong Wang 《Petroleum Science》 SCIE CAS CSCD 2017年第1期61-74,共14页
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of... Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data. 展开更多
关键词 Least-squares migration Adaptive singularspectrum analysis regularization Blended data
下载PDF
The posterior selection method for hyperparameters in regularized least squares method
2
作者 Yanxin Zhang Jing Chen +1 位作者 Yawen Mao Quanmin Zhu 《Control Theory and Technology》 EI CSCD 2024年第2期184-194,共11页
The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal lik... The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal likelihood maximization method, which are inaccurate or computationally expensive. In this paper, two posterior methods are proposed to select hyperparameters based on different prior knowledge (constraints), which can obtain the optimal hyperparameters using the optimization theory. Moreover, we also give the theoretical optimal constraints, and verify its effectiveness. Numerical simulation shows that the hyperparameters and parameter vector estimate obtained by the proposed methods are the optimal ones. 展开更多
关键词 regularization method Hyperparameter System identification Least squares algorithm
原文传递
Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake 被引量:5
3
作者 XU Min ZENG Guang-ming +3 位作者 XU Xin-yi HUANG Guo-he SUN Wei JIANG Xiao-yun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期946-952,共7页
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t... Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake. 展开更多
关键词 Dongting Lake CHLOROPHYLL-A Bayesian regularized BP neural network model sum of square weights
下载PDF
An iterative algorithm for solving ill-conditioned linear least squares problems 被引量:8
4
作者 Deng Xingsheng Yin Liangbo +1 位作者 Peng Sichun Ding Meiqing 《Geodesy and Geodynamics》 2015年第6期453-459,共7页
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics... Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy. 展开更多
关键词 Severe ill-conditioned matrix Linear least squares problems Self-adaptive Iterative scheme Cholesky decomposition regularization parameter Tikhonov solution Truncated SVD solution
下载PDF
Tuning of Prior Covariance in Generalized Least Squares 被引量:1
5
作者 William Menke 《Applied Mathematics》 2021年第3期157-170,共14页
Generalized Least Squares (least squares with prior information) requires the correct assignment of two prior covariance matrices: one associated with the uncertainty of measurements;the other with the uncertainty of ... Generalized Least Squares (least squares with prior information) requires the correct assignment of two prior covariance matrices: one associated with the uncertainty of measurements;the other with the uncertainty of prior information. These assignments often are very subjective, especially when correlations among data or among prior information are believed to occur. However, in cases in which the general form of these matrices can be anticipated up to a set of poorly-known parameters, the data and prior information may be used to better-determine (or “tune”) the parameters in a manner that is faithful to the underlying Bayesian foundation of GLS. We identify an objective function, the minimization of which leads to the best-estimate of the parameters and provide explicit and computationally-efficient formula for calculating the derivatives needed to implement the minimization with a gradient descent method. Furthermore, the problem is organized so that the minimization need be performed only over the space of covariance parameters, and not over the combined space of model and covariance parameters. We show that the use of trade-off curves to select the relative weight given to observations and prior information is not a form of tuning, because it does not, in general maximize the posterior probability of the model parameters, and can lead to a different weighting than the procedure described here. We also provide several examples that demonstrate the viability, and discuss both the advantages and limitations of the method. 展开更多
关键词 Bayesian Inference COVARIANCE ERROR Generalized Least squares Gradient Descent INTERPOLATION regularIZATION Trade-Off Curve Variance
下载PDF
A meshless method for the nonlinear generalized regularized long wave equation
6
作者 王聚丰 白福浓 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期35-42,共8页
This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtain... This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method. 展开更多
关键词 generalized regularized long wave equation meshless method moving least-squares approximation CONVERGENCE
下载PDF
SUPERCONVERGENCE OF LEAST-SQUARES MIXED FINITE ELEMENTS FOR ELLIPTIC PROBLEMS ON TRIANGULATION
7
作者 陈艳萍 杨菊娥 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2003年第2期214-225,共12页
In this paper,we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations.On the basis of the L2-projec... In this paper,we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations.On the basis of the L2-projection and some mixed finite element projections,we obtain the superconvergence result of least-squares mixed finite element solutions.This error estimate indicates an accuracy of O(h3/2)if the lowest order Raviart-Thomas elements are employed. 展开更多
关键词 超收敛性 最小二乘混合有限元法 椭圆方程 边值问题
下载PDF
The Principle of Square Hole Machining and It's Tooling Structure Design
8
作者 Jinxia NIU 《International Journal of Technology Management》 2015年第2期7-8,共2页
In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and pro... In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel. 展开更多
关键词 Abstract: In order to meet the rapid needs of processing square hole in mechanical equipment the paper expounds the square hole processing method: planetary wheel method and analyze the principle of tooling structure and process with computer graphics parameters design. The results that as long as the appropriate parameters using the above method not only can punch the square hole can also be processed triangle the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel. Keywords: square hole processing Planet wheel Lelo triangle square hole drilling
下载PDF
一种求解低秩矩阵补全的修正加速近端梯度算法
9
作者 王川龙 张璐璇 《忻州师范学院学报》 2024年第2期1-4,共4页
设计适应大规模数据的快速算法是求解低秩矩阵补全的重点。文章改变了加速近端梯度算法的步长,对近似函数的近端最优点和上一迭代点增加了一个仿射组合。通过控制仿射系数,能够使得到的新迭代点有靠近原函数的趋势,进而能在保持算法精... 设计适应大规模数据的快速算法是求解低秩矩阵补全的重点。文章改变了加速近端梯度算法的步长,对近似函数的近端最优点和上一迭代点增加了一个仿射组合。通过控制仿射系数,能够使得到的新迭代点有靠近原函数的趋势,进而能在保持算法精度的同时提高算法效率。最后通过相应的数值实验证明了算法的有效性和稳定性。 展开更多
关键词 低秩矩阵补全 核范数正则化 最小二乘法 近端梯度算法 仿射组合
下载PDF
Performance Analysis of ZF and RZF in Low-Resolution ADC/DAC Massive MIMO Systems
10
作者 Talha Younas Shen Jin +4 位作者 Muluneh Mekonnen Gao Mingliang Saqib Saleem Sohaib Tahir Mahrukh Liaqat 《China Communications》 SCIE CSCD 2024年第8期115-126,共12页
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver ra... Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO. 展开更多
关键词 low-bit analog-digital converter massive(multiple-input-multiple-output)MIMO minimum mean square error(MMSE) regularized zero forcing zero forcing
下载PDF
基于参数自修正的配电网故障定位数字孪生技术研究
11
作者 席瑞翎 季亮 +4 位作者 姜恩宇 宋耐超 洪启腾 李博通 李振坤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期11-20,共10页
配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生... 配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生模型的参数自修正技术,提出了一种定位模型随参数变化动态校正的配电网故障定位方法。同时,搭建了基于数字孪生服务器和实时数字仿真系统(real time digital system, RTDS)的数字孪生平台,实现了配电网实时的物理模型和数字孪生模型的同步运行。在算例仿真中,利用该数字孪生平台,验证了基于数字孪生技术的配电网故障定法方法。结果表明,该方法可在各类系统运行条件下实时修正配电网参数,显著提高配电网故障定位的速度和精度。 展开更多
关键词 数字孪生 故障定位 参数辨识 最小二乘法 正则化正交匹配追踪重构算法
下载PDF
New normalized LMS adaptive filter with a variable regularization factor 被引量:9
12
作者 LI Zhoufan LI Dan +1 位作者 XU Xinlong ZHANG Jianqiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期259-269,共11页
A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f... A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 adaptive filtering normalized least mean square (NLMS) minimum-disturbance (MD) constraint VARIABLE regularIZATION VARIABLE STEP-SIZE NLMS
下载PDF
Constrained regularization for noninvasive glucose sensing using Raman spectroscopy 被引量:1
13
作者 Wei-Chuan Shih 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2015年第4期46-53,共8页
Multivariate calibration is an important tool for spectroscopic measurermnent of analyte con-centrations.We present a detailed study of a hybrid multivariate calibration technique,con-strained regularization(CR),and d... Multivariate calibration is an important tool for spectroscopic measurermnent of analyte con-centrations.We present a detailed study of a hybrid multivariate calibration technique,con-strained regularization(CR),and demonstrate its utility in noninvasive glucose sensing uasing Raman spectroscopy.Similar to partial least squares(PIS)and principal component regression(PCR),CR builds an implicit model and requires knowledge only of the concentrations of the analyte of interest.Calibration is treated as an inverse problem in which an optimal balance between model complexity and noise rejection is achieved.Prior information is included in the form of a spectroscopic constraint that can be obtained conveniently.When used with an appropriate constraint,CR provides a better calibration model compared to PLS in both numerical and experimental studies. 展开更多
关键词 Gluoose NONINVASIVE multivariate calibration partial least squares principal com-ponent regression Raman spectroscopy constrained regularization
下载PDF
基于L1范数正则化和最小二乘优化的冲击载荷识别研究 被引量:5
14
作者 陈辉 缪炳荣 +3 位作者 赵浪涛 张盈 蒋钏应 周凤 《噪声与振动控制》 CSCD 北大核心 2023年第1期62-67,99,共7页
为了改善冲击载荷识别问题的病态特性,最大限度提高识别精度,在时域内提出一种基于L1范数正则化和最小二乘优化的改进冲击载荷识别方法。采用L1范数正则化方法构建冲击载荷稀疏反卷积模型,使用截断牛顿内点法求解L1范数的最小二乘优化问... 为了改善冲击载荷识别问题的病态特性,最大限度提高识别精度,在时域内提出一种基于L1范数正则化和最小二乘优化的改进冲击载荷识别方法。采用L1范数正则化方法构建冲击载荷稀疏反卷积模型,使用截断牛顿内点法求解L1范数的最小二乘优化问题,同时根据预条件共轭梯度法确定最优搜索路径和计算方向。最后,考虑不同冲击工况、不同响应位置对识别结果的影响。通过对铝合金板进行冲击载荷识别试验进行验证,发现在铝板受单次冲击和多次冲击工况下所识别载荷与施加的实际载荷吻合良好。结果还表明,与Tikhonov正则化方法相比,该方法能够提高冲击载荷识别的准确性和稳定性。 展开更多
关键词 振动与波 冲击载荷识别 L1范数正则化 最小二乘优化 TIKHONOV正则化 正则化参数
下载PDF
利用GOCE和GRACE卫星观测数据确定静态重力场模型 被引量:3
15
作者 赵永奇 李建成 +3 位作者 徐新禹 苏勇 踪华 魏辉 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2023年第6期2322-2336,共15页
高精度静态卫星重力场模型在全球海洋环流研究、全球/区域数字高程基准面确定等领域有重要应用,本文研究仅利用GOCE卫星和联合GRACE卫星观测数据确定高精度高阶次静态重力场模型.利用GOCE卫星全周期高精度引力梯度分量(V_(xx)、V_(yy)、... 高精度静态卫星重力场模型在全球海洋环流研究、全球/区域数字高程基准面确定等领域有重要应用,本文研究仅利用GOCE卫星和联合GRACE卫星观测数据确定高精度高阶次静态重力场模型.利用GOCE卫星全周期高精度引力梯度分量(V_(xx)、V_(yy)、V_(zz)和V_(xz))观测值基于直接最小二乘法构建300阶次的SGG(Satellite Gravity Gradiometry)法方程,并利用卫星跟踪卫星观测值基于点域加速度法构建130阶SST(Satellite-to-Satellite Tracking)法方程,然后利用方差分量估计联合SGG和SST法方程确定300阶次纯GOCE卫星重力场模型GOSG02S.利用全周期GRACE观测数据由动力学方法解算了180阶次的SWPU-GRACE2021S模型,并将其对应法方程与GOCE卫星法方程联合解算了GRACE和GOCE的联合模型WHU-SWPU-GOGR2022S.分别基于XGM2019模型和GPS水准数据对本文解算的三个模型GOSG02S、SWPU-GRACE2021S和WHU-SWPU-GOGR2022S在频域和空域进行了精度分析,结果表明,GOSG02S和WHU-SWPU-GOGR2022S模型与GO_CONS_GCF_2_DIR_R6、GO_CONS_GCF_2_TIM_R6、GO_CONS_GCF_2_SPW_R5、GOCO06s和Tongji-GMMG2021S等使用了GOCE卫星全周期数据的模型精度相当,精度差异基本都在毫米量级;SWPU-GRACE2021S模型在160阶次之前与国际主流GRACE卫星重力场模型ITSG-Grace2018s和Tongji-Grace02s精度相当. 展开更多
关键词 GOCE GRACE 直接最小二乘法 加速度法 ARMA 正则化
下载PDF
Regularized Kernel Forms of Minimum Squared Error Method
16
作者 XU Jian-hua ZHANG Xue-gong LI Yan-da 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2006年第1期1-7,共7页
Minimum squared error(MSE)algorithm is one of the classical pattern recognition and regression analysis methods,whose objective is to minimize the squared error summation between the output of linear function and the ... Minimum squared error(MSE)algorithm is one of the classical pattern recognition and regression analysis methods,whose objective is to minimize the squared error summation between the output of linear function and the desired output.In this paper,the MSE algorithm is modified by using kernel functions satisfying the Mercer condition and regularization technique;and the nonlinear MSE algorithms based on kernels and regularization term,that is,the regularized kernel forms of MSE algorithm,are proposed.Their objective functions include the squared error summation between the output of nonlinear function based on kernels and the desired output and a proper regularization term.The regularization technique can handle ill-posed problems,reduce the solution space,and control the generalization.Three squared regularization terms are utilized in this paper.In accordance with the probabilistic interpretation of regularization terms,the difference among three regularization terms is given in detail.The synthetic and real data are used to analyze the algorithm performance. 展开更多
关键词 nonlinear support vector machine squared error kernel form regularIZATION
原文传递
On Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers
17
作者 Tapio Pahikkala Antti Airola +1 位作者 Fabian Gieseke Oliver Kramer 《Journal of Computer Science & Technology》 SCIE EI CSCD 2014年第1期90-104,共15页
In this work we present the first efficient algorithm for unsupervised training of multi-class regularized least- squares classifiers. The approach is closely related to the unsupervised extension of the support vecto... In this work we present the first efficient algorithm for unsupervised training of multi-class regularized least- squares classifiers. The approach is closely related to the unsupervised extension of the support vector machine classifier known as maximum margin clustering, which recently has received considerable attention, though mostly considering the binary classification case. We present a combinatorial search scheme that combines steepest descent strategies with powerful meta-heuristics for avoiding bad local optima. The regularized least-squares based formulation of the problem allows us to use matrix algebraic optimization enabling constant time checks for the intermediate candidate solutions during the search. Our experimental evaluation indicates the potential of the novel method and demonstrates its superior clustering performance over a variety of competing methods on real world datasets. Both time complexity analysis and experimental comparisons show that the method can scale well to practical sized problems. 展开更多
关键词 unsupervised learning multi-class regularized least-squares classification maximum margin clustering combinatorial optimization
原文传递
PPLS与稀疏鉴别流形正则化的双模型协同宽度神经网络
18
作者 任世锦 季天元 +3 位作者 林睦良 王倚天 迟云爽 温昕 《江苏海洋大学学报(自然科学版)》 CAS 2023年第1期88-96,共9页
宽度神经网络(broad neural networks,BNN)被认为是继深度神经网络之后的一种主流机器学习算法,然而BNN没有考虑数据不确定性及局部几何结构信息。为此,提出概率偏最小二乘(probabilistic partial least square,PPLS)与稀疏鉴别流形正... 宽度神经网络(broad neural networks,BNN)被认为是继深度神经网络之后的一种主流机器学习算法,然而BNN没有考虑数据不确定性及局部几何结构信息。为此,提出概率偏最小二乘(probabilistic partial least square,PPLS)与稀疏鉴别流形正则化的双模型协同宽度神经网络建模方法。该方法首先使用PPLS对BNN输入特征以及增强特征构成的高维数据提取低维隐藏变量,消除数据不确定信息以及冗余特征;基于稀疏表示方法自适应构建样本局部与非局部近邻矩阵,并结合PPLS模型投影矩阵,提出一种新颖的融合模型信息迁移、鉴别流形正则化以及l_(2,p)-范数约束的BNN建模方法,有效增强BNN模型的鲁棒性、建模精度,同时消除数据的随机不确定性;最后给出迭代优化求解方法获取模型最优参数。在不同规模数据集、不同光照和角度图像数据集对所提算法进行仿真验证,结果表明该算法对不同规模数据集均能取得满意的效果;对图像数据集仿真结果表明其具有很强的鲁棒性和泛化性能。 展开更多
关键词 概率偏最小二乘 稀疏表示 鉴别流形正则化 宽度神经网络 l_(2 p)-范数
下载PDF
利用均方误差相对变化规律确定正则化参数及其在PolInSAR测量反演中的应用 被引量:1
19
作者 林东方 姚宜斌 +2 位作者 郑敦勇 廖孟光 谢建 《测绘学报》 EI CSCD 北大核心 2023年第9期1480-1491,共12页
正则化方法是大地测量解算病态问题的常用方法,而正则化参数是影响正则化方法解算结果的关键参数。以均方误差最小为准则选取正则化参数,具有较充分的理论依据,可有效实现模型参数估值精度的提升。但是,均方误差计算过程中需要未知参数... 正则化方法是大地测量解算病态问题的常用方法,而正则化参数是影响正则化方法解算结果的关键参数。以均方误差最小为准则选取正则化参数,具有较充分的理论依据,可有效实现模型参数估值精度的提升。但是,均方误差计算过程中需要未知参数的真值,在实际情形中只能通过参数估值替代真值估算均方误差,难以获得可靠准确的均方误差值,限制了正则化参数的有效性。鉴于此,本文分析了正则化参数变化引起的方差与偏差变化规律,提出了一种均方误差相对变化值确定方法。依据不同正则化参数下模型参数真值不变原则,计算不同正则化参数下的方差与偏差相对变化量,从而消除参数真值对均方误差估计的影响。本文首先利用不同正则化参数计算两相邻正则化参数间的方差与标准差相对变化量;然后计算两正则化参数间模型参数估值变化量,通过差分运算分析得到两相邻正则化参数下的偏差相对变化量;最后综合标准差变化与偏差变化关系,得到均方误差最大降幅的正则化参数。通过PolInSAR植被高测量试验对本文方法的可行性进行了验证。试验表明,本文方法可有效改善正则化法模型参数估计精度。两个PolInSAR测量试验模型参数反演精度均得到了提高,合理验证了本文方法的可行性与有效性。 展开更多
关键词 均方误差 正则化方法 正则化参数 相对变化 PolInSAR测量
下载PDF
基于改进型正则化MLS的风概率分布三维数值拟合方法
20
作者 张丽霞 赵骞 李国良 《可再生能源》 CAS CSCD 北大核心 2023年第1期67-73,共7页
针对移动最小二乘法(MLS)存在的过拟合问题,以及传统正则化方法普遍采用单一的正则项系数,没有充分考虑不同阶次MLS基函数对过拟合产生不同程度的影响,文章提出了一种改进型正则化MLS方法,对不同阶次项采用了不同的正则项系数。将该方... 针对移动最小二乘法(MLS)存在的过拟合问题,以及传统正则化方法普遍采用单一的正则项系数,没有充分考虑不同阶次MLS基函数对过拟合产生不同程度的影响,文章提出了一种改进型正则化MLS方法,对不同阶次项采用了不同的正则项系数。将该方法应用于风电场风速风向概率分布的三维曲面拟合。该方法有效克服了传统MLS方法的过拟合问题;拟合后,所显示的风概率分布规律性得到增强;对3个不同区域风分布的拟合结果表明该方法具有较强的通用性。 展开更多
关键词 移动最小二乘法 曲面拟合 联合概率密度 改进型 正则化 数值计算
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部