期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
1
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 Debris flow Water–sediment separation structure Grille spacing performance regulation effect
下载PDF
Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications 被引量:1
2
作者 Ning Gu Zuoheng Zhang Yan Li 《Nano Research》 SCIE EI CSCD 2022年第1期1-17,共17页
With unique physicochemical properties and biological effects,magnetic nanomaterials(MNMs)play a crucial role in the biomedical field.In particular,magnetic iron oxide nanoparticles(MIONPs)are approved by the United S... With unique physicochemical properties and biological effects,magnetic nanomaterials(MNMs)play a crucial role in the biomedical field.In particular,magnetic iron oxide nanoparticles(MIONPs)are approved by the United States Food and Drug Administration(FDA)for clinical applications at present due to their low toxicity,biocompatibility,and biodegradability.Despite the unarguable effectiveness,massive space for improving such materials'performance still needs to be filled.Recently,many efforts have been devoted to improving the preparation methods based on the materials'biosafety.Besides,researchers have successfully.regulated the performance of magnetic nanoparticles(MNPs)by changing their sizes,morphologies,compositions;or by.aggregating as-synthesized MNPs in an orderly arrangement to meet various clinical requirements.The rise of cloud computing and artificial intelligence techniques provides novel ways for fast material characterization,automated data analysis,and mechanism demonstration.In this review,we summarized the studies that focused on the preparation routes and performance regulations of high-quality MNPs,and their special properties applied in biomedical detection,diagnosis,and treatment.At the same time,the future.development of MNMs was also discussed. 展开更多
关键词 magnetic nanomaterials high performance performance regulation controllable assembly biomedical applications
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部