Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the accelera...Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the acceleration of gravity).The model wall has a height of 1.5 m with a scale ratio of 1/4 and retains dry sand throughout.The input motions are amplified to three levels of input peak base acceleration,0.11g,0.24g,and 0.39g,corresponding to minor,moderate,and major earthquakes,respectively.Investigation of the seismic response of the retaining walls focuses on acceleration and lateral displacement of the wall and backfill,dynamic earth pressures,and tensile load in the reinforcements(modeled by phosphor-bronze strips welded into a mesh).The inclusion of reinforcement has been observed to improve the integrity of the wall-soil system,mitigate vibration-related damage,and reduce the fundamental frequency of a reinforced system.Propagation of acceleration from the base to the upper portion is accompanied by time delay and nonlinear amplification.A reinforced system with a lower acceleration amplification factor than the unreinforced one indicates that reinforcement can reduce the amplification effect of input motion.Under minor and moderate earthquake loadings,reinforcement allows the inertia force and seismic earth pressure to be asynchronous and decreases the seismic earth pressure when inertia forces peak.During major earthquake loading,the wall is displaced horizontally less than the backfill,with soil pushing the wall substantially;the effect of backfill reinforcement has not been fully mobilized.The dynamic earth pressure is large at the top and diminishes toward the bottom.展开更多
In order to determine the rational width of backfill in the goaf-side retained roadway, the deformation failure mechanism of surrounding rock in retained roadway is studied in the use of theoretical analysis, numerica...In order to determine the rational width of backfill in the goaf-side retained roadway, the deformation failure mechanism of surrounding rock in retained roadway is studied in the use of theoretical analysis, numerical simulation, etc., when the width of backfill is different. The results show that: with the increase of backfill width, the roof deformation above the backfill decreases; the outside of backfill obviously suffers from greater stress compared to the inner side of backfill; the damage firstly appears in the intersection of top backfill and roof; the plastic failure area is mainly distributed in the roof and floor of inside the roadway; 2 m wide backfill in the goaf-side retained roadway can meet the requirements of roadway deformation. Based on the original combination support of "anchor-mesh-belt-lock" in the haulage-track roadway, the study also considers the reinforced support of "anchor-mesh-belt" above the backfill, and 50 m ahead of working face, and 200 m behind the working face. This kind of support achieves a good result. The roadway deformation of field measurement shows that it can satisfy the need of the next working face.展开更多
The sea embankment is a critical civil works in marine and coastal engineering. In this study, an innovative technique is proposed for constructing erective sea embankments. In the construction of sea embankments, thi...The sea embankment is a critical civil works in marine and coastal engineering. In this study, an innovative technique is proposed for constructing erective sea embankments. In the construction of sea embankments, this technique integrates PCC pile installation, PVDs drainage systems, and geotextile reinforcements, resulting in sea embankments with PCC piles. In the application of a sea embankment with PCC piles, PCC piles are employed as the retaining structures; the soft sea ground inside PCC piles is drained and improved by PVDs and vacuum-surcharge combined preloading; geotextile-reinforced backfills lying over the improved soft ground form the embankment body. Brief descriptions of the fundamentals, design and construction of the sea embankment with PCC piles are presented. A case study on the stability of sea embankment with PCC piles is presented as well.展开更多
基金the National Natural Science Foundation of China(Nos.41901073 and 52078435)the Sichuan Science and Technology Program of China(No.2021YJ0001)。
文摘Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the acceleration of gravity).The model wall has a height of 1.5 m with a scale ratio of 1/4 and retains dry sand throughout.The input motions are amplified to three levels of input peak base acceleration,0.11g,0.24g,and 0.39g,corresponding to minor,moderate,and major earthquakes,respectively.Investigation of the seismic response of the retaining walls focuses on acceleration and lateral displacement of the wall and backfill,dynamic earth pressures,and tensile load in the reinforcements(modeled by phosphor-bronze strips welded into a mesh).The inclusion of reinforcement has been observed to improve the integrity of the wall-soil system,mitigate vibration-related damage,and reduce the fundamental frequency of a reinforced system.Propagation of acceleration from the base to the upper portion is accompanied by time delay and nonlinear amplification.A reinforced system with a lower acceleration amplification factor than the unreinforced one indicates that reinforcement can reduce the amplification effect of input motion.Under minor and moderate earthquake loadings,reinforcement allows the inertia force and seismic earth pressure to be asynchronous and decreases the seismic earth pressure when inertia forces peak.During major earthquake loading,the wall is displaced horizontally less than the backfill,with soil pushing the wall substantially;the effect of backfill reinforcement has not been fully mobilized.The dynamic earth pressure is large at the top and diminishes toward the bottom.
基金Financial support for this work was provided by Chinese National 863 High Technology Plan (No. 2012AA062101)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)the Graduate Students Innovation Fund of Colleges and Universities in Jiangsu Province (No.CXZZ12_0950)
文摘In order to determine the rational width of backfill in the goaf-side retained roadway, the deformation failure mechanism of surrounding rock in retained roadway is studied in the use of theoretical analysis, numerical simulation, etc., when the width of backfill is different. The results show that: with the increase of backfill width, the roof deformation above the backfill decreases; the outside of backfill obviously suffers from greater stress compared to the inner side of backfill; the damage firstly appears in the intersection of top backfill and roof; the plastic failure area is mainly distributed in the roof and floor of inside the roadway; 2 m wide backfill in the goaf-side retained roadway can meet the requirements of roadway deformation. Based on the original combination support of "anchor-mesh-belt-lock" in the haulage-track roadway, the study also considers the reinforced support of "anchor-mesh-belt" above the backfill, and 50 m ahead of working face, and 200 m behind the working face. This kind of support achieves a good result. The roadway deformation of field measurement shows that it can satisfy the need of the next working face.
文摘The sea embankment is a critical civil works in marine and coastal engineering. In this study, an innovative technique is proposed for constructing erective sea embankments. In the construction of sea embankments, this technique integrates PCC pile installation, PVDs drainage systems, and geotextile reinforcements, resulting in sea embankments with PCC piles. In the application of a sea embankment with PCC piles, PCC piles are employed as the retaining structures; the soft sea ground inside PCC piles is drained and improved by PVDs and vacuum-surcharge combined preloading; geotextile-reinforced backfills lying over the improved soft ground form the embankment body. Brief descriptions of the fundamentals, design and construction of the sea embankment with PCC piles are presented. A case study on the stability of sea embankment with PCC piles is presented as well.