The disorders originated from architectural design in buildings, show in different forms. One of them is the level difference originated from lot’s slope which affects structures through short column phenomenon. The ...The disorders originated from architectural design in buildings, show in different forms. One of them is the level difference originated from lot’s slope which affects structures through short column phenomenon. The great stiffness of short columns enables them to absorb large amounts of structural energy. Inattention of some manuals and regulations such as Earthquake regulations to this phenomenon necessitates paying further attention to it. On this basis, the present study employed experimental modeling and numerical modeling for a four-story reinforced concrete building that involves the analysis of simple 2-D frames of varying floor heights and varying number of bays using a very popular software tool STAAD Pro on both a sloping and a flat lot. Also Sap2000 software had been used to show that the displacement of floors is greater for a flat lot building than a sloping lot building. However, the increase in shear was found to be quite greater in short columns compared to common ones and an enormous moment should be tolerated by sloping lot structures. The greater stiffness of the structure was also revealed by non-linear static (Push-Over) analysis. According to the results, short column are required to have more resistant sections and are suggested to be reinforced with more bars. In addition, more steel should be used as stirrups than as longitudinal bars. Also for existing structures, shear capacity of short columns should be retrofitted by FRP, Steel Jacket or other materials.展开更多
On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of crack...On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of cracking, deformation and failure course of thespecimens. At the same time, the results of numerical calculation are compared with the results oftest. The results indicate that, under monotonic horizontal load the failures of the specimens withflange wall and without flange wall all occur at the intersections of lintel bottom and limb ofwall, the failures also occur at the bottom of limb; the load-displacement curve of wall withoutflange is steeper than that of wall with flange, and the ductility is worse than that of wall withflange; the results, such as cracking, deformation, yield load and so on of finite element analysisagree well with the results of test. These results provide theoretical basis of study andapplication of R. C short-limb shear wall.展开更多
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und...Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.展开更多
To research the axial compression behavior of steel reinforced recycled concrete(SRRC)short columns confined by carbon fiber reinforced plastics(CFRP)strips,nine scaled specimens of SRRC short columns were fabricated ...To research the axial compression behavior of steel reinforced recycled concrete(SRRC)short columns confined by carbon fiber reinforced plastics(CFRP)strips,nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading.Subsequently,the failure process and failure modes were observed,and load-displacement curves as well as the strain of various materials were analyzed.The effects on the substitution percentage of recycled coarse aggregate(RCA),width of CFRP strips,spacing of CFRP strips and strength of recycled aggregate concrete(RAC)on the axial compression properties of columns were also analyzed in the experimental investigation.Furthermore,the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study.The results show that the first to reach the yield state was the profile steel in the columns,then the longitudinal rebars and stirrups yielded successively,and finally RAC was crushed as well as the CFRP strips was also broken.The replacement rate of RCA has little effect on the columns,and with the substitution rate of RCA from 0 to 100%,the bearing capacity of columns decreased by only 4.8%.Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns,the maximum increase was 10.5%or 11.4%,and the ductility of columns was significantly enhanced.Obviously,CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns.On this basis,considering the restraint effect of CFRP strips and the adverse effects of RCA,the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.展开更多
Statically push-out tests of 20 steel reinforced concrete short columns (SRCSC) with stud connectors on the surface of shape steel after fire and two SRCSC under ambient temperature were carried out, in order to stu...Statically push-out tests of 20 steel reinforced concrete short columns (SRCSC) with stud connectors on the surface of shape steel after fire and two SRCSC under ambient temperature were carried out, in order to study the failure mode, load-slip relationship and the interfacial shear transfer of SRC members after fire. Experimental results show that the typical failure modes and load-slip curves of SRCSC after fire are almost the same as the case under ambient temperature. The interfacial shear transfer of SRCSC declines exponentially not only with the increase of the peak temperature the specimen experienced but also with the increase of the peak temperature duration. The interfacial shear transfer of the specimens with studs arranged at the steel web is much higher than those with studs arranged at the steel flange. Empirical formulas of SRCSC interfacial shear transfer after fire are proposed, and the calculated results generally agree well with the experimental results.展开更多
文摘The disorders originated from architectural design in buildings, show in different forms. One of them is the level difference originated from lot’s slope which affects structures through short column phenomenon. The great stiffness of short columns enables them to absorb large amounts of structural energy. Inattention of some manuals and regulations such as Earthquake regulations to this phenomenon necessitates paying further attention to it. On this basis, the present study employed experimental modeling and numerical modeling for a four-story reinforced concrete building that involves the analysis of simple 2-D frames of varying floor heights and varying number of bays using a very popular software tool STAAD Pro on both a sloping and a flat lot. Also Sap2000 software had been used to show that the displacement of floors is greater for a flat lot building than a sloping lot building. However, the increase in shear was found to be quite greater in short columns compared to common ones and an enormous moment should be tolerated by sloping lot structures. The greater stiffness of the structure was also revealed by non-linear static (Push-Over) analysis. According to the results, short column are required to have more resistant sections and are suggested to be reinforced with more bars. In addition, more steel should be used as stirrups than as longitudinal bars. Also for existing structures, shear capacity of short columns should be retrofitted by FRP, Steel Jacket or other materials.
文摘On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of cracking, deformation and failure course of thespecimens. At the same time, the results of numerical calculation are compared with the results oftest. The results indicate that, under monotonic horizontal load the failures of the specimens withflange wall and without flange wall all occur at the intersections of lintel bottom and limb ofwall, the failures also occur at the bottom of limb; the load-displacement curve of wall withoutflange is steeper than that of wall with flange, and the ductility is worse than that of wall withflange; the results, such as cracking, deformation, yield load and so on of finite element analysisagree well with the results of test. These results provide theoretical basis of study andapplication of R. C short-limb shear wall.
基金Supported by National Science Fund for Distinguished Young Scholars of China( No. 50425824
文摘Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.
基金The financial support of this work came from the project of National Natural Science Foundation of China(Grant No.51408485)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2022JM-258 and 2021JM-332)+1 种基金the Open Fund Project of Qinghai Provincial Key Laboratory of Plateau Green Building and Eco-community(KLKF-2021-001)thanks a lot for the financial support of the above institutions.
文摘To research the axial compression behavior of steel reinforced recycled concrete(SRRC)short columns confined by carbon fiber reinforced plastics(CFRP)strips,nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading.Subsequently,the failure process and failure modes were observed,and load-displacement curves as well as the strain of various materials were analyzed.The effects on the substitution percentage of recycled coarse aggregate(RCA),width of CFRP strips,spacing of CFRP strips and strength of recycled aggregate concrete(RAC)on the axial compression properties of columns were also analyzed in the experimental investigation.Furthermore,the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study.The results show that the first to reach the yield state was the profile steel in the columns,then the longitudinal rebars and stirrups yielded successively,and finally RAC was crushed as well as the CFRP strips was also broken.The replacement rate of RCA has little effect on the columns,and with the substitution rate of RCA from 0 to 100%,the bearing capacity of columns decreased by only 4.8%.Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns,the maximum increase was 10.5%or 11.4%,and the ductility of columns was significantly enhanced.Obviously,CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns.On this basis,considering the restraint effect of CFRP strips and the adverse effects of RCA,the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.
基金Acknowledgements This research is supported by the National Science Foundation of China (Grant Nos. 50908118 and No. 51308307), Ningbo Science Foundation (No. 2013A610194) and Ningbo Key Scientific Projects (No. XKL11D2079).
文摘Statically push-out tests of 20 steel reinforced concrete short columns (SRCSC) with stud connectors on the surface of shape steel after fire and two SRCSC under ambient temperature were carried out, in order to study the failure mode, load-slip relationship and the interfacial shear transfer of SRC members after fire. Experimental results show that the typical failure modes and load-slip curves of SRCSC after fire are almost the same as the case under ambient temperature. The interfacial shear transfer of SRCSC declines exponentially not only with the increase of the peak temperature the specimen experienced but also with the increase of the peak temperature duration. The interfacial shear transfer of the specimens with studs arranged at the steel web is much higher than those with studs arranged at the steel flange. Empirical formulas of SRCSC interfacial shear transfer after fire are proposed, and the calculated results generally agree well with the experimental results.