期刊文献+
共找到22,308篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method
1
作者 Xiaozhou Xia Changsheng Qin +2 位作者 Guangda Lu Xin Gu Qing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2257-2276,共20页
Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac... Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures. 展开更多
关键词 Fracture phase field corrosion-induced cracking non-uniform corrosion expansion protective layer thickness reinforcement concrete
下载PDF
Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo
2
作者 Sonia Benkhellat Mohammed Kadri Abdelghani Seghir 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期609-623,共15页
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte... In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%. 展开更多
关键词 reinforced concrete silo perfectly matched layers soil-structure interaction granular material-structure interaction effective seismic input method damage index
下载PDF
Electrochemical Study of the Corrosion Inhibitory Capacity of Calcined Attapulgite in Reinforced Concrete Medium
3
作者 Malang Bodian Kinda Hannawi +3 位作者 Dame Keinde Modou Fall Aveline Darquennes Prince William Agbodjan 《Advances in Materials Physics and Chemistry》 CAS 2024年第5期76-94,共19页
The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main facto... The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main factors of corrosion of reinforced concrete structures. This study aims to valorize a clay inhibitor against reinforcement corrosion in reinforced concrete. This clay (Attapulgite) was incorporated into reinforced concretes at different percentages of substitution of calcined attapulgite (0%, 5% and 10%) to cement in the formulation. The corrosion inhibitory power of attapulgite is evaluated in reinforced concretes subjected to the action of chloride ions at different intervals in the NaCl solution (1 day, 21 days and 45 days) by electrochemical methods (zero current chronopotentiometry, polarization curves and electrochemical impedance spectroscopy). This study showed that in the presence of chloride ions, the composition based on 10% attapulgite has an appreciable inhibitory effect with an average inhibitory efficiency of 82%. 展开更多
关键词 ATTAPULGITE Electrochemical Methods INHIBITOR reinforced concrete
下载PDF
Experimental Study of the Anti-Corrosion Performance of Montmorillonite K-10 on Rebar in HCl Environment: Application in Mortar for the Rehabilitation of Reinforced Concrete Degraded by Corrosion
4
作者 Malang Bodian Mariétou Barro Diop-Fall +3 位作者 Dame Keinde El-Hadji Dieye Modou Gningue Diop Modou Fall 《Open Journal of Civil Engineering》 2024年第2期155-167,共13页
This work first investigates the corrosion-inhibiting behavior of montmorillonite K-10 on reinforcing steel. The corrosion-inhibiting power of the clay (Montmorillonite) is determined in a medium HCl (C = 1N) using fr... This work first investigates the corrosion-inhibiting behavior of montmorillonite K-10 on reinforcing steel. The corrosion-inhibiting power of the clay (Montmorillonite) is determined in a medium HCl (C = 1N) using free corrosion potential monitoring, Tafel potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results of this study showed a satisfactory corrosion-inhibiting efficiency of around 72.665% for the optimum content of 1%. This is due to the presence of a stable oxide layer that protects the metal against corrosion. To validate the concept of montmorillonite as a corrosion inhibitor in repair mortar, we now turn to the influence of montmorillonite on the mechanical properties of mortars in the hardened state. In this part, montmorillonite K-10 is added to the mortar by partial substitution of the cement by 5% and 10% of the cement mass. The aim of this study is to ensure that the addition of this clay to the mortar composition will not have a negative effect on its compressive and flexural strengths. The results of the compression and flexural tests showed that the presence of montmorillonite in the mortar improved flexural and compressive strengths for the different compositions studied. 展开更多
关键词 Clay reinforced concrete CORROSION Inhibitor REHABILITATION Electrochemical Methods
下载PDF
Strategies for Teaching the Reinforced Concrete Structures Course in Engineering Majors
5
作者 Huina Li 《Journal of World Architecture》 2024年第3期93-98,共6页
The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career ... The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed. 展开更多
关键词 Engineering ability reinforced concrete Structure course Classroom practice Expert exchange
下载PDF
Evaluation of the Inhibitory Gel Aloe vera against Corrosion of Reinforcement Concrete in NaCl Medium
6
作者 Malang Bodian Dame Keinde +3 位作者 Kinda Hannawi Modou Fall Aveline Darquennes Prince William Agbodjan 《Materials Sciences and Applications》 2024年第5期101-112,共12页
Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we h... Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we have investigated in this paper Aloe vera extracts as a green corrosion inhibitor for reinforcing steel in NaCl environments. Using electrochemical methods (zero-intensity chronopotentiometry, Tafel lines and electrochemical impedance spectroscopy), this experimental work investigated the effect of these Aloe vera (AV) extracts on corrosion inhibition of concrete reinforcing bar (HA, diameter 12mm) immersed in a 0.5M NaCl solution. The results show that Aloe vera extracts have an average corrosion-inhibiting efficacy of around 86% at an optimum concentration of 20%. 展开更多
关键词 reinforced concrete Green Inhibitor Corrosion reinforcEMENT Electrochemical Methods
下载PDF
Analysis of Bonding Properties of Corroded Reinforcement Concrete
7
作者 Liang Fang Yingzhuo Liu 《Journal of Architectural Research and Development》 2024年第3期80-92,共13页
In order to investigate the degradation of bonding properties between corroded steel bars and concrete,this study employs the half-beam method to conduct bond-slip tests between corroded steel bars and concrete after ... In order to investigate the degradation of bonding properties between corroded steel bars and concrete,this study employs the half-beam method to conduct bond-slip tests between corroded steel bars and concrete after impressed-current accelerated corrosion of the steel bars in concrete.The effects of steel corrosion rate,steel bar diameter,steel bar strength grade,and concrete strength grade on the bonding properties between concrete and corroded steel bars were analyzed.The influence of different corrosion rates on specimens’bonding strength and bond-slip curves was determined,and a constitutive relationship for bond-slip between corroded steel bars and concrete was proposed.The results indicate that the ultimate bonding strength of corroded reinforced concrete specimens decreases with increasing corrosion rate.Additionally,an increase in corrosive crack width leads to a linear decrease in bonding strength.Evaluating the decline in adhesive properties through rust expansion crack width in engineering applications is feasible.Furthermore,a bond-slip constitutive relationship between corroded steel bars and concrete was established using relative bond stress and relative slip values,which aligned well with the experimental findings. 展开更多
关键词 CORROSION reinforced concrete Bonding property Constitutive relation
下载PDF
A numerical case study on the long-term seismic assessment of reinforced concrete tunnels in corrosive environments 被引量:1
8
作者 Maria Antoniou Antonios Mantakas +1 位作者 Nikolaos Nikitas Raul Fuentes 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期551-572,共22页
The paper investigates the long-term seismic behaviour of an underground reinforced concrete(RC)metro tunnel in Santiago,Chile,considering the combined effects of chloride-induced corrosion and cumulative,low-amplitud... The paper investigates the long-term seismic behaviour of an underground reinforced concrete(RC)metro tunnel in Santiago,Chile,considering the combined effects of chloride-induced corrosion and cumulative,low-amplitude seismic shaking on the structure’s performance.The soil-tunnel response is evaluated with the aid of transient,nonlinear finite element analysis using a two-dimensional(2D)plane strain numerical model that adopts advanced nonlinear models for the simulation of soil and concrete plasticity and the dynamic stiffness behaviour.The effects of corrosion deterioration are demonstrated in terms of time-dependent loss of rebar area and cover concrete stiffness and strength.The study illustrates the influence of ageing and repeated seismic shaking on lining deformation,crack development,and the modal characteristics of the intact and degrading systems.The results indicate that multiple lowamplitude events drive the non-degrading RC tunnel beyond its elastic regime without significant structural response consequences.A noticeable impact of corrosion deterioration on the structure’s seismic performance is revealed,increasing with the number and intensity of earthquake events.Two different tunnel embedment depths are comparatively assessed.The analyses demonstrate larger coseismic section convergence in the case of the deeper tunnel,yet a less pronounced effect of ageing and successive seismic loading compared to the shallow section,which is evident in the RC lining cracks at the end of shaking. 展开更多
关键词 TUNNELS reinforcement corrosion Ageing EARTHQUAKES Numerical modelling Long-term performance concrete cracking behaviour
下载PDF
Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile(EFP) 被引量:1
9
作者 Li-kai Hao Wen-bin Gu +5 位作者 Ya-dong Zhang Qi Yuan Xing-bo Xie Shao-xin Zou Zhen Wang Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期280-297,共18页
To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetratio... To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetration and explosion shock wave were studied.Based on LS-DYNA finite element software and RHT model with modified parameters,a 3D large-scale numerical model was established for simulation analysis,and the rationality of the material model parameters and numerical simulation algorithm were verified.On this basis,the combined damage effect of EFP penetration and explosion shock wave on reinforced concrete wall was studied,the effect of steel bars on the penetration of EFP was highlighted,and the effect of impact positions on the damage of the reinforced concrete wall was also examined.The results reveal that the designed shaped charge can form a crater with a large diameter and high depth on the reinforced concrete wall.The average crater diameter is greater than 67 cm(5.58 times of charge diameter),and crater depth is greater than 22 cm(1.83 times of charge diameter).The failure of the reinforced concrete wall is mainly caused by EFP penetration.When only EFP penetration is considered,the average diameter and depth of the crater are 54.0 cm(4.50 times of charge diameter)and 23.7 cm(1.98 times of charge diameter),respectively.The effect of explosion shock wave on crater depth is not significant,resulting in a slight increase in crater depth.The average crater depth is 24.5 cm(2.04 times of charge diameter)when the explosion shock wave is considered.The effect of explosion shock wave on the crater diameter is obvious,which can aggravate the damage range of the crater,and the effect gradually decreases with the increase of standoff distance.Compared with the results for a plain concrete wall,the crater diameter and crater depth of the reinforced concrete wall are reduced by 5.94%and 9.96%,respectively.Compared to the case in which the steel bar is not hit,when the EFP hit one steel bar and the intersection of two steel bars,the crater diameter decreases by 1.36%and 5.45%respectively,the crater depth decreases by 4.92%and 14.02%respectively.The EFP will be split by steel bar during the penetration process,resulting in an irregular trajectory. 展开更多
关键词 reinforced concrete Explosively formed projectile(EFP) PENETRATION Explosion shock wave Numerical simulation
下载PDF
The Effects of Degradation Phenomena of the Steel-Concrete Interface in Reinforced Concrete Structures 被引量:1
10
作者 Bozabe Renonet Karka Bassa Bruno +1 位作者 Nadjitonon Ngarmaïm Alladjo Rimbarngaye 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期1-21,共21页
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s... Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion. 展开更多
关键词 reinforced concrete Construction Steel-concrete Interface Corrosion Degradation Rate ADHESION Bearing Capacity
下载PDF
Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets 被引量:1
11
作者 Zhijie Fan Huaxin Liu +2 位作者 Genjin Liu Xuezhi Wang Wenqi Cui 《Journal of Renewable Materials》 SCIE EI 2023年第4期1763-1791,共29页
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba... The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete. 展开更多
关键词 Basalt fiber reinforced polymer polyvinyl chloride recycled aggregate concrete axial compression performance stress-strain relationships stress-strain model
下载PDF
Experimental Study and Failure Criterion Analysis of Rubber Fibre Reinforced Concrete under Biaxial Compression-Compression
12
作者 Yanli Hu Peiwei Gao +2 位作者 Furong Li Zhiqing Zhao Zhenpeng Yu 《Journal of Renewable Materials》 SCIE EI 2023年第4期2055-2073,共19页
In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di... In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC. 展开更多
关键词 Rubber fibre reinforced concrete(RFRC) biaxial compression-compression mechanical properties mechanism analysis failure criterion
下载PDF
Determination of Reflected Temperature in Active Thermography Measurements for Corrosion Quantification of Reinforced Concrete Elements
13
作者 Suyadi Kartorono Herlien Dwiarti Setio +1 位作者 Adang Surahman Ediansjah Zulkifli 《Structural Durability & Health Monitoring》 EI 2023年第3期195-208,共14页
This paper sums up the determining analysis of the measuring location of Treflusing a thermocouple during the thermography tests.Laboratory temperature distribution testing methods,analysis of value and location of Tre... This paper sums up the determining analysis of the measuring location of Treflusing a thermocouple during the thermography tests.Laboratory temperature distribution testing methods,analysis of value and location of Treflmeasurement are explained in this paper.The heat source is two halogen lamps of 500 watts eachfitted at a distance of 30–50 cm.Noises appearing during testing of thermography are corrected with measured T_(refl) value.The results of thermogram correction of corroded concrete surfaces using T_(refl) values are displayed in this paper too.The concrete surface temperature results of quantitative image processing method are compared to the experimental test results.The results showed good accuracy,which was seen from most errors<3%and the maximum error is<5%.The end of paper,explained of application Treflvalue to the corroded reinforced concrete thermogram. 展开更多
关键词 Reflected temperature active thermography quantitative analysis reinforced concrete corrosion
下载PDF
Mechanical Characterization of Rhecktophyllum Camerunense (RC) Fiber Reinforced Concrete
14
作者 Jean Calvin Bidoung Nicolas Stéphane Nyobe +1 位作者 Mey Mahamat Imar Lucien Meva’a 《Journal of Materials Science and Chemical Engineering》 2023年第8期20-32,共22页
This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A... This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A comparative study between ordinary concrete and concrete reinforced with RC fiber at different percentages (0.1%, 0.2% and 0.3%) was carried out. The mechanical characterization of the material consisted in studying the flexural, compressive and splitting tensile strength by using cylindrical specimens of dimensions 160 × 320 in accordance with standards EN 12390-3 and EN 12390-6. The study of the mechanical properties was completed by the three-point bending test using prismatic test specimens of dimension 40 × 40 × 160 made according to the EN 196 standard. It emerges from this work that the addition of RC fiber improves the mechanical properties of concrete up to 0.2% with a peak at 0.1% of fiber corresponding to respective increases of 9%, 16% and 6% of the values of mechanical resistance to compression, flexion and tension after 28 days. From 0.3% of fiber, the values of the mechanical characteristics of the composite drop to values lower than those of ordinary concrete. The density reduction rate at 28 days is about 10% compared to the mass of ordinary concrete. These results allow us to conclude that the RC fiber could be valorized for the production of lightweight concrete. 展开更多
关键词 reinforced concrete RC Fiber Mechanical Properties Lightweight concrete
下载PDF
Mechanical Characterization of Rhecktophyllum Camerunense (RC) Fiber Reinforced Concrete
15
作者 Jean Calvin Bidoung Nicolas Stéphane Nyobe +1 位作者 Mey Mahamat Imar Lucien Meva’a 《Journal of Modern Physics》 2023年第8期20-32,共10页
This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A... This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A comparative study between ordinary concrete and concrete reinforced with RC fiber at different percentages (0.1%, 0.2% and 0.3%) was carried out. The mechanical characterization of the material consisted in studying the flexural, compressive and splitting tensile strength by using cylindrical specimens of dimensions 160 × 320 in accordance with standards EN 12390-3 and EN 12390-6. The study of the mechanical properties was completed by the three-point bending test using prismatic test specimens of dimension 40 × 40 × 160 made according to the EN 196 standard. It emerges from this work that the addition of RC fiber improves the mechanical properties of concrete up to 0.2% with a peak at 0.1% of fiber corresponding to respective increases of 9%, 16% and 6% of the values of mechanical resistance to compression, flexion and tension after 28 days. From 0.3% of fiber, the values of the mechanical characteristics of the composite drop to values lower than those of ordinary concrete. The density reduction rate at 28 days is about 10% compared to the mass of ordinary concrete. These results allow us to conclude that the RC fiber could be valorized for the production of lightweight concrete. 展开更多
关键词 reinforced concrete RC Fiber Mechanical Properties Lightweight concrete
下载PDF
Research on Technical Solutions to Renovate the Reinforced Concrete Constructions in Vietnam
16
作者 Hung Mai Sy 《Open Journal of Civil Engineering》 2023年第2期342-352,共11页
During the use of constructions, they will be degraded. Due to the negative impact on structures such as increase in vertical load, horizontal windy load needs to evaluate the current state of the constructions before... During the use of constructions, they will be degraded. Due to the negative impact on structures such as increase in vertical load, horizontal windy load needs to evaluate the current state of the constructions before renovating, especially the current state of the main structural system whether necessary to carry out repair and reinforcement or not. In addition, the inspection of the current status constructions before renovating is also the legal basis for the granting of construction permits to renovate and repair degraded works. Reinforced concrete buildings in the coastal areas in Vietnam, in particular, are working in the marine environment leading to damage the reinforced concrete construction. It should be significantly noted. Although there have been legal documents related to the inspection of constructions issued in Vietnam, the detailed contents and procedures of institution for each type of construction have not been mentioned yet. Therefore, the topic research paper of “research on technical solutions to renovate constructions with reinforced concrete structures in Vietnam” is to improve the quality and efficiency of construction. This investigation in Vietnam is very essential. This study uses the method of surveying the current state of the construction works in use, using the experimental sampling method to analyze and evaluate the damage of the work, then propose typical solutions to repair construction. The purpose of this study is to provide a process to check the damage of the works, and to propose solutions to repair them. This work is very important and has practical significance, helping managers to maintain works better. 展开更多
关键词 reinforced concrete Building Renovation reinforced concrete House
下载PDF
Comparative Evaluation of the Chemical Composition and Physical Properties of Reinforced Concrete Steel Bars Used in Construction in Senegal
17
作者 El Hadji Amadou Fall Sy Dame Keinde Malang Bodian 《Open Journal of Civil Engineering》 2023年第2期292-302,共11页
This article presents, the study of a comparative evaluation of the chemical composition and physical properties, linear mass deviations, of four (04) types of steel used in the construction sector in Senegal. Type 1 ... This article presents, the study of a comparative evaluation of the chemical composition and physical properties, linear mass deviations, of four (04) types of steel used in the construction sector in Senegal. Type 1 (E1), Type 2 (E2) and Type 3 (E3) steels are produced by locally established companies and Type 4 (E4) witness bars are imported from the France. The chemical analyses of the different types of steel were carried out by combustion, infrared (IR) detection for carbon and sulfur, by reducing fusion for nitrogen and by optical emission spectrometer (SEO) for the rest of the elements. The composition was determined on bars with a diameter of 10 mm. Linear mass deviations were evaluated for steels with a diameter of 8 mm, 10 mm and 12 mm. The results of the chemical analyses showed that the limit value for the percentage of carbon was exceeded by 29.16% for the steel, type 3. For the other types (1, 2 and 4), the limit values set out in the French standard NF EN 10,080 are not exceeded. As regards the relative differences in mass, the results showed that for steels of local manufacture, all the samples of bars with diameters 10 and 12 mm and 33% of steels with diameters 8 mm do not comply with the standard. The results also indicate that the chemical composition and relative linear mass deviations of the steels, type 4 comply with the standard. Thus, locally manufactured steels are not always suitable for use in reinforced concrete constructions. 展开更多
关键词 Local Manufacturing reinforced concrete DURABILITY Eurocode 2
下载PDF
Design and Construction Technology of Prefabricated Reinforced Concrete Slab Culverts
18
作者 Qiang Yang 《Journal of World Architecture》 2023年第5期52-59,共8页
Compared with traditional cast-in-situ concrete slab culverts,prefabricated reinforced concrete slab culverts can be produced more quickly and has strong quality controllability,strong earthquake resistance,and repeat... Compared with traditional cast-in-situ concrete slab culverts,prefabricated reinforced concrete slab culverts can be produced more quickly and has strong quality controllability,strong earthquake resistance,and repeatability.They will be the primary production method of slab culverts in the future.This article offers a comprehensive review of the design and construction technology associated with prefabricated reinforced concrete slab culverts.The objective is to provide a valuable reference for related enterprises,enhance the quality of design and construction in precast pile configuration,and,in turn,contribute to the advancement of construction projects within our country. 展开更多
关键词 Slab culvert Prefabricated reinforced concrete Design points Construction technology
下载PDF
Strengthening effects of BFRP on reinforced concrete beams 被引量:5
19
作者 黄丽华 李宇婧 王跃方 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期182-186,共5页
Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initia... Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well. 展开更多
关键词 basalt fiber reinforced polymer (BFRP) strengthening reinforced concrete beam EXPERIMENT stren^thenin~ zuidelines
下载PDF
Durability of concrete beams reinforced with CFRP sheet under wet-dry cycles and loading 被引量:2
20
作者 李杉 任慧韬 +1 位作者 黄承逵 崔云飞 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期376-380,共5页
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ... The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load. 展开更多
关键词 reinforced concrete beams reinforced carbon fiber reinforced polymers DURABILITY wet-dry cycles sustained load
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部