To improve the ballistic resistance of the ballistic resistant composites, this paper deals with the microscopically fractographic analysis of their failure caused by Fragments Simulated Projectiles (FSP) and bullet w...To improve the ballistic resistance of the ballistic resistant composites, this paper deals with the microscopically fractographic analysis of their failure caused by Fragments Simulated Projectiles (FSP) and bullet with the objective to clarify the failure modes of the composites, and to further improve the ballistic resistance of the ballistic systems by hybridizing based on the currently market available materials.After the analysis, it has been found that the penetration of the FSP into the panels causes shear failure in the impact side of the target but extensive tension failure in the distal side of the composite target. The failure modes also include matrix fragmentation, and delamination, and with resin content as high as 30%, more filaments are broken by cutting in the composite. Compared with the failure caused by bullet, there are more cutting or shearing for the failure caused by FSP, but more compressive failure caused by bullet. This paper also discusses the effects of hybridizing different types of fabrics on the ballistic resistance of the composite based on the observations and numerical simulation.展开更多
The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE univer...The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE universal material testing machine and Aramis V6 digital image correlation( DIC) technique.More specifically,the composite samples own four hybrid ratios(Na∶ Nc= 12∶ 0,8 ∶ 4,6 ∶ 6 and 4 ∶ 8). The results showed that the aramid/carbon hybrid MBWK fabric reinforced composites showed nearly linear response until reaching the maximum load and the inserting yarns distribution on the surface of MBWK fabrics reinforced composites had a great influence on the strain pattern distribution. Besides,the tensile strength,the tensile modulus and the elongation at breakage of 0° samples and 90° samples increased with the decreasing of aramid/carbon hybrid ratio. In a word,the changes of tensile strength, tensile modulus and elongation at breakage have a lot to do with the difference of aramid/carbon hybrid ratio.展开更多
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that...Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.展开更多
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that...Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.展开更多
文摘To improve the ballistic resistance of the ballistic resistant composites, this paper deals with the microscopically fractographic analysis of their failure caused by Fragments Simulated Projectiles (FSP) and bullet with the objective to clarify the failure modes of the composites, and to further improve the ballistic resistance of the ballistic systems by hybridizing based on the currently market available materials.After the analysis, it has been found that the penetration of the FSP into the panels causes shear failure in the impact side of the target but extensive tension failure in the distal side of the composite target. The failure modes also include matrix fragmentation, and delamination, and with resin content as high as 30%, more filaments are broken by cutting in the composite. Compared with the failure caused by bullet, there are more cutting or shearing for the failure caused by FSP, but more compressive failure caused by bullet. This paper also discusses the effects of hybridizing different types of fabrics on the ballistic resistance of the composite based on the observations and numerical simulation.
基金Tianjin Municipal Science and Technology Commission for the Financial Supports,China(No.11ZCKFSF00500)China's General Administration of Quality Supervision,Inspection and Quarantine for the Financial Supports,China(No.201210260)
文摘The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE universal material testing machine and Aramis V6 digital image correlation( DIC) technique.More specifically,the composite samples own four hybrid ratios(Na∶ Nc= 12∶ 0,8 ∶ 4,6 ∶ 6 and 4 ∶ 8). The results showed that the aramid/carbon hybrid MBWK fabric reinforced composites showed nearly linear response until reaching the maximum load and the inserting yarns distribution on the surface of MBWK fabrics reinforced composites had a great influence on the strain pattern distribution. Besides,the tensile strength,the tensile modulus and the elongation at breakage of 0° samples and 90° samples increased with the decreasing of aramid/carbon hybrid ratio. In a word,the changes of tensile strength, tensile modulus and elongation at breakage have a lot to do with the difference of aramid/carbon hybrid ratio.
文摘Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.
文摘Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.