期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Wing walls for enhancing the seismic performance of reinforced concrete frame structures 被引量:1
1
作者 Yang Weisong Guo Xun +1 位作者 Xu Weixiao Yuan Xin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第2期411-423,共13页
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake... A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A ‘strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams. 展开更多
关键词 story walls flexural shake columns suffered sections drift reinforced frames
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:5
2
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Experimental study on the seismic response of braced reinforced concrete frame with irregular columns 被引量:6
3
作者 Xiao Jianzhuang Li Jie Chen Jun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期487-494,共8页
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K... A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China. 展开更多
关键词 seismic response reinforced concrete braced frame irregular columns
下载PDF
Model Experiment on Integral Seismic Behavior of Reinforced Concrete Frame with Split Columns
4
作者 李忠献 景萌 +1 位作者 郝永昶 康谷贻 《Transactions of Tianjin University》 EI CAS 2005年第6期412-416,共5页
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und... Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one. 展开更多
关键词 reinforced concrete frame seismic behavior split column short column model experiment
下载PDF
Influence of the column-to-beam flexural strength ratio on the failure mode of beam-column connections in RC frames 被引量:1
5
作者 Gong Maosheng Zuo Zhanxuan +2 位作者 Sun Jing He Riteng Zhao Yinan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期441-452,共12页
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ... The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes. 展开更多
关键词 strong column-weak beam column-to-beam flexural strength ratio reinforced concrete frame structure beam-column connection failure mode
下载PDF
Improving the design of reinforcing frames by simulating the arch and peltate venation structures
6
作者 XING Deng-hai CHEN Wu-yi 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期29-36,共8页
Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the st... Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the structure of the frame, a mechanical model of arch structure was devel- oped, and two solutions for the model were analyzed and compared with each other. Through the a- nalysis, application rules of arch structure for improving the design were obtained. Then, distribu- tion rules of peltate venation structure were summarized. By using the same method, application rules of peltate venation structure for improving the design were also obtained. Finally, mechanical problem of the frame was described, and rib arrangement of the frame was redesigned. A parameter optimization for the widths of ribs in bionic arrangement was also carried out to accomplish the im- proving design. Comparison between bionic and conventional reinforcing frames shows that the weight is reduced by as much as 15.3%. 展开更多
关键词 improving design lightweight reinforcing frame arch structure peltate venation bionic design
下载PDF
Experimental investigation of damage behavior of RC frame members including non-seismically designed columns
7
作者 Chen Linzhi,Lu Xilin,Jiang Huanjun and Zheng Jianbo State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China PhD Candidate Professor +1 位作者 Associate Professor Master of Engineering 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第2期301-311,共11页
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horiz... Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns. 展开更多
关键词 reinforced concrete frame member cyclic test hysteresis behavior damage behavior seismic performance
下载PDF
Optimal seismic design of reinforced concrete structures under timehistory earthquake loads using an intelligent hybrid algorithm
8
作者 Sadjad Gharehbaghi Mohsen Khatibinia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期97-109,共13页
A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismi... A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads. 展开更多
关键词 optimal seismic design reinforced concrete frames earthquake loads particle swarm optimization intelligent regression model support vector machine
下载PDF
Investigating the Retrofit of RC Frames Using TADAS Yielding Dampers
9
作者 Mehrzad TahamouliRoudsari KCheraghi RAghayari 《Structural Durability & Health Monitoring》 EI 2022年第4期343-359,共17页
TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures.These types of dampers are designed so that they would yield before the main components of the str... TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures.These types of dampers are designed so that they would yield before the main components of the structure during earthquake.This dissipates a large portion of the earthquake’s energy and reduces the energy dissipation demand in the main components of the structure.Considering its suitable performance,this damper has been the subject of numerous studies.However,there are still ambiguities regarding the effect of the number of these dampers on the retrofitting of reinforced concrete(RC)frames and their design procedure.In this study,a singlestory,single-bay RC frame with the scale of 1:3,equipped with the TADAS damper,was subjected to hysteresis loading until the drift of 4%.Then,for further assessment,48 calibrated numerical models were constructed in ABAQUS and the effects of the number of TADAS dampers and column axial force upon the stiffness,strength,and ductility of the frame were accurately investigated.Also,a number of formulations were presented to calculate how the stiffness and lateral strength of the retrofitted frame are affected by an increase in the number of the TADAS plates.The results showed that if the shear capacity of the retrofitted frame is three times that of the initial frame,the structure would have the best response.In addition,if the axial force in the columns exceeds 0.2 Pcr the energy dissipation and ductility factor of the frame drastically decrease. 展开更多
关键词 Pushover analysis reinforced concrete frame REHABILITATION TADAS yielding damper
下载PDF
Seismic Response of Reinforced Concrete Buildings Retrofitted with Dissipative Steel Braces
10
作者 Luigi Di Samo Gaenato Manfredi 《Journal of Civil Engineering and Architecture》 2010年第2期8-24,共17页
The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. in... The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. innovative buckling restrained braces (BRBs). Experimental tests were performed on two sample full scale RC framed buildings designed for gravity loads only. Such frames were subjected to cyclic pushovers to investigate their structural performance under different levels of earthquake loadings. The outcomes of the performed experimental tests demonstrate the efficiency and reliability of utilizing BRBs to retrofit non ductile RC frames. These outcomes were confirmed by refined non linear static and response history analyses carried out on an existing RC school framed building designed without seismic details and retrofitted with BRBs similar to those adopted for the tested full-scale frame. In such sample building the BRBs are placed along the perimeter of the existing frames to minimize the interruption of the functionality of the school and for easy of maintenance in the aftermath of major earthquake ground motions. The seismic performance assessment of the retrofitted structural system is illustrated in a detailed manner. Local and global response quantities are presented. The values of the global overstrength Ω for the case study vary between 2.14 and 2.54 for the retrofitted framed building. The translation ductility μ△-values range between 2.07 and 2.36. The response modification factor (or behaviour factor, namely R- or q-factor) is on average equal to 5.0. Additionally, the estimated maximum axial ductility of the BRBs is about 10. Finally, the cost-effectiveness of the adopted retrofitting scheme is emphasized and further needs for the application of BRBs are highlighted. 展开更多
关键词 Seismic retrofitting dissipative braces reinforced concrete frames response analysis earthquakes.
下载PDF
Dynamic Reliability Analysis of Braced Frame Structures Considering Inter Story Correlation
11
作者 Xu-Yang Zhang Ping Hong 《Journal of Mechanics Engineering and Automation》 2020年第4期110-119,共10页
Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumpt... Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumption and the first exceeding failure probability can be used to obtain the failure probability of the buckling restrained brace frame system under earthquake load,and the relationship between the failure probabilities of each floor of the structure is analyzed to obtain the frame system reliability interval of frame structure.The results show that the reliability of BRB frame structure is higher than that of pure frame structure,and the discrete failure probability is lower. 展开更多
关键词 reinforced concrete frame BRB dynamic reliability analysis inter story failure correlation
下载PDF
Research on the direct damage-based seismic design method of RC frame structures
12
作者 Lanfang LUO Jing XU 《International Journal of Technology Management》 2013年第2期65-67,共3页
Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction fa... Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor(RD factor). A design example is then followed to verify this method. 展开更多
关键词 reinforced concrete frame structures Direct damage-based seismic design Damage-based inelastic response spectrum
下载PDF
Rapid report of seismic damage to buildings in the 2022 M 6.8 Luding earthquake,China 被引量:8
13
作者 Zhe Qu Baijie Zhu +1 位作者 Yuteng Cao Haoran Fu 《Earthquake Research Advances》 CSCD 2023年第1期11-30,共20页
The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)fr... The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)frame buildings,and masonry buildings.The near-field region is known to be tectonically highly active,and the local intensity level is the highest,that is,0.4g peak ground acceleration(PGA)for the design basis earthquake,in the Chinese zonation of seismic ground motion parameters.The extent of damage ranged from the weak-story collapse that claimed lives to the extensive nonstructural damage that suspended occupancy.The report highlights the first observation of the destruction of rubber bearings and viscous dampers in the isolation layer of Chinese seismically isolated buildings.It also features the rare observation of the brittle shear failure of RC columns in moment-resisting frames in a region of such a high seismic design requirement.Possible reasons that may have attributed to the reported damage are suggested by providing facts observed in the field.However,careful forensic analyses are needed before any conclusive judgment can be made. 展开更多
关键词 Base isolation Rubber bearing Viscous damper reinforced concrete frame Masonry structure Weak-story collapse Near-fault area Terrace riser Nonstructural element
下载PDF
The role of soil in structure response of a building damaged by the 26 December 2018 earthquake in Italy 被引量:2
14
作者 Angela Fiamingo Melina Bosco Maria Rossella Massimino 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期937-953,共17页
Local soil conditions can significantly modify the seismic motion expected on the soil surface.In most cases,the indications concerning the influence of the underlying soil provided by the in-force European and Italia... Local soil conditions can significantly modify the seismic motion expected on the soil surface.In most cases,the indications concerning the influence of the underlying soil provided by the in-force European and Italian Building Codes underestimate the real seismic amplification effects.For this reason,numerical analyses of the local seismic response(LSR)have been encouraged to estimate the soil filtering effects.These analyses are generally performed in free-field conditions,ignoring the presence of superstructures and,therefore,the effects of dynamic soil-structure interaction(DSSI).Moreover,many studies on DSSI are characterised by a sophisticated modelling of the structure and an approximate modelling of the soil(using springs and dashpots at the foundation level);while others are characterised by a sophisticated modelling of the soil and an approximate modelling of the structure(considered as a simple linear elastic structure or a single degree of freedom system).This paper presents a set of finite element method(FEM)analyses on a fully-coupled soil-structure system for a reinforced concrete building located in Fleri(Catania,Italy).The building,designed for gravity loads only,was severely damaged during the 26 December 2018 earthquake.The soil was modelled considering an equivalent visco-elastic behaviour,while the structure was modelled assuming both the visco-elastic and visco-inelastic behaviours.The comparison made between the results of the FEM analyses and the observed damage is valuable. 展开更多
关键词 Local site response Seismic risk reinforced concrete frame Fully-coupled soil-structure system Nonlinear dynamic analysis
下载PDF
Performance evaluation of low-rise infilled reinforced concrete frames designed by considering local effects on column shear demand
15
作者 Jarun SRECHAI Wongsa WARARUKSAJJA +1 位作者 Sutat LEELATAVIWAT Suchart LIMKATANYU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第5期686-703,共18页
The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength ... The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness.However,local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the infill wall,which can result in failure or in serious situations,collapse.In this study,the effectiveness of a design strategy to consider the complex infill wall interaction was investigated.The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand.The performance of these frames was assessed using nonlinear static,and dynamic analyses.The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions.It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength,the failure modes were different.The proposed method can eliminate the column shear failure from the building.Finally,the merits and limitations of this approach are discussed and summarized. 展开更多
关键词 reinforced concrete frames infill wall seismic design method shear failure wall-frame interaction
原文传递
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements 被引量:2
16
作者 Guo Zongming Zhang Yaoting +1 位作者 Lu Jiezhi Fan Jian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期697-714,共18页
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforce... To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating stow damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading. 展开更多
关键词 fiber beam-column element stiffness degradation damage index reinforced concrete column reinforced concrete frame
下载PDF
A multi-objective design method for seismic retrofitting of existing reinforced concrete frames using pin-supported rocking walls
17
作者 Yue CHEN Rong XU +1 位作者 Hao WU Tao SHENG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第9期1089-1103,共15页
Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attention... Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attentions to researchers recently.However,it is still a challenge that how to determine the stiffness demand of PWs and assign the value of the drift concentration factor(DCF)for entire systems rationally and efficiently.In this paper,a design method has been exploited for seismic retrofitting of existing RFs using PWs(RF-PWs)via a multi-objective evolutionary algorithm.Then,the method has been investigated and verified through a practical project.Finally,a parametric analysis was executed to exhibit the strengths and working mechanism of the multi-objective design method.To sum up,the findings of this investigation show that the method furnished in this paper is feasible,functional and can provide adequate information for determining the stiffness demand and the value of the DCFfor PWs.Furthermore,it can be applied for the preliminary design of these kinds of structures. 展开更多
关键词 pin-supported rocking wall reinforced concrete frame seismic retrofit stiffness demand drift concentration factor multi-objective design genetic algorithm Pareto optimal solution
原文传递
Seismic behavior of outrigger truss-wall shear connections using multiple steel angles
18
作者 Li Xian Wang Wei +1 位作者 Lü Henglin Zhang Guangchang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第2期197-208,共12页
An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which inv... An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed. 展开更多
关键词 anchor truss suffer welded reinforced stiffness tensile desirable properly frames
下载PDF
Localizing structural damage based on auto-regressive with exogenous input model parameters and residuals using a support vector machine based learning approach
19
作者 Burcu GUNES 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第10期1492-1506,共15页
Machine learning algorithms operating in an unsupervised fashion has emerged as promising tools for detecting structural damage in an automated fashion.Its essence relies on selecting appropriate features to train the... Machine learning algorithms operating in an unsupervised fashion has emerged as promising tools for detecting structural damage in an automated fashion.Its essence relies on selecting appropriate features to train the model using the reference data set collected from the healthy structure and employing the trained model to identify outlier conditions representing the damaged state.In this paper,the coefficients and the residuals of the autoregressive model with exogenous input created using only the measured output signals are extracted as damage features.These features obtained at the baseline state for each sensor cluster are then utilized to train the one class support vector machine,an unsupervised classifier generating a decision function using only patterns belonging to this baseline state.Structural damage,once detected by the trained machine,a damage index based on comparison of the residuals between the trained class and the outlier state is implemented for localizing damage.The two-step damage assessment framework is first implemented on an eight degree-of-freedom numerical model with the effects of measurement noise integrated.Subsequently,vibration data collected from a one-story one-bay reinforced concrete frame inflicted with progressive levels of damage have been utilized to verify the accuracy and robustness of the proposed methodology. 展开更多
关键词 structural health monitoring damage localization auto-regressive with exogenous input models one-class support vector machine reinforced concrete frame
原文传递
Realization of the global yield mechanism of RC frame structures by redesigning the columns using column tree method 被引量:2
20
作者 BAI JiuLin OU JinPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第10期1627-1637,共11页
Global failure mechanism, i.e., the strong-column weak-beam mechanism, can provide higher total energy dissipation capacity with less ductility demand on components than other failure modes, and results in a more unif... Global failure mechanism, i.e., the strong-column weak-beam mechanism, can provide higher total energy dissipation capacity with less ductility demand on components than other failure modes, and results in a more uniform story drift distribution and higher resistance to earthquake loads at the system level. However, the current code-based elastic design method cannot guarantee the global failure mechanism of frame structures under severe earthquakes. In this paper, a simple, but practical design procedure is proposed to ensure the global failure mechanism of reinforced concrete(RC) frame structures by redesigning the columns using the column tree method(CTM). CTM considers the yield limit state of all beams and column bases. The code-based design is firstly carried out to determine the section information of all beams and base columns. Then, the internal force demands applied on the column tree can be derived. Lastly, the column moments, shear forces and axial forces are determined according to the free-body diagram of CTM to finish the column redesign. Two RC frame structures with 6 and 12 stories are illustrated to verify the design procedure. The analytical results demonstrate the proposed approach can realize the global failure mechanism. 展开更多
关键词 global failure mechanism column tree method (CTM) reinforced concrete frame structures failure mode plastic hinges
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部