This paper proposes an implicit function based open-loop analysis method to detect the subsynchronous resonance(SSR),including asymmetric subsynchronous modal attraction(ASSMA)and asymmetric subsynchronous modal repul...This paper proposes an implicit function based open-loop analysis method to detect the subsynchronous resonance(SSR),including asymmetric subsynchronous modal attraction(ASSMA)and asymmetric subsynchronous modal repulsion(ASSMR),of doubly-fed induction generator based wind farms(DFIG-WFs)penetrated power systems.As some important parameters of DFIG-WF are difficult to obtain,reinforcement learning and least squares method are applied to identify those important parameters.By predicting the location of closed-loop subsynchronous oscillation(SSO)modes based on the calculation of partial differentials of characteristic equation,both ASSMA and ASSMR can be found.The proposed method in this paper can select SSO modes which move to the right half complex planes as control parameters change.Besides,the proposed open-loop analysis method is adaptive to parameter uncertainty.Simulation studies are carried out on the 4-machine 11-bus power system to verify properties of the proposed method.展开更多
基金supported in part by the State Key Program of National Natural Science Foundation of China under Grant No.U1866210the National Natural Science Foundation of China under Grant No.51807067.
文摘This paper proposes an implicit function based open-loop analysis method to detect the subsynchronous resonance(SSR),including asymmetric subsynchronous modal attraction(ASSMA)and asymmetric subsynchronous modal repulsion(ASSMR),of doubly-fed induction generator based wind farms(DFIG-WFs)penetrated power systems.As some important parameters of DFIG-WF are difficult to obtain,reinforcement learning and least squares method are applied to identify those important parameters.By predicting the location of closed-loop subsynchronous oscillation(SSO)modes based on the calculation of partial differentials of characteristic equation,both ASSMA and ASSMR can be found.The proposed method in this paper can select SSO modes which move to the right half complex planes as control parameters change.Besides,the proposed open-loop analysis method is adaptive to parameter uncertainty.Simulation studies are carried out on the 4-machine 11-bus power system to verify properties of the proposed method.