Rail fasteners are a crucial component of the railway transportation safety system.These fasteners,distinguished by their high length-to-width ratio,frequently encounter elevated failure rates,necessitating manual ins...Rail fasteners are a crucial component of the railway transportation safety system.These fasteners,distinguished by their high length-to-width ratio,frequently encounter elevated failure rates,necessitating manual inspection and maintenance.Manual inspection not only consumes time but also poses the risk of potential oversights.With the advancement of deep learning technology in rail fasteners,challenges such as the complex background of rail fasteners and the similarity in their states are addressed.We have proposed an efficient and high-precision rail fastener detection algorithm,named YOLO-O2E(you only look once-O2E).Firstly,we propose the EFOV(Enhanced Field of View)structure,aiming to adjust the effective receptive field size of convolutional kernels to enhance insensitivity to small spatial variations.Additionally,The OD_MP(ODConv and MP_2)and EMA(EfficientMulti-Scale Attention)modules mentioned in the algorithm can acquire a wider spectrum of contextual information,enhancing the model’s ability to recognize and locate objectives.Additionally,we collected and prepared the GKA dataset,sourced from real train tracks.Through testing on the GKA dataset and the publicly available NUE-DET dataset,our method outperforms general-purpose object detection algorithms.On the GKA dataset,our model achieved a mAP 0.5 value of 97.6%and a mAP 0.5:0.95 value of 83.9%,demonstrating excellent inference speed.YOLO-O2E is an algorithm for detecting anomalies in railway fasteners that is applicable in practical industrial settings,addressing the industry gap in rail fastener detection.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Number 61971078)supported by Chongqing Municipal Education Commission Grants for Major Science and Technology Project(KJZD-M202301901)the Chongqing University of Technology Graduate Innovation Foundation(Grant No.gzlcx20223222).
文摘Rail fasteners are a crucial component of the railway transportation safety system.These fasteners,distinguished by their high length-to-width ratio,frequently encounter elevated failure rates,necessitating manual inspection and maintenance.Manual inspection not only consumes time but also poses the risk of potential oversights.With the advancement of deep learning technology in rail fasteners,challenges such as the complex background of rail fasteners and the similarity in their states are addressed.We have proposed an efficient and high-precision rail fastener detection algorithm,named YOLO-O2E(you only look once-O2E).Firstly,we propose the EFOV(Enhanced Field of View)structure,aiming to adjust the effective receptive field size of convolutional kernels to enhance insensitivity to small spatial variations.Additionally,The OD_MP(ODConv and MP_2)and EMA(EfficientMulti-Scale Attention)modules mentioned in the algorithm can acquire a wider spectrum of contextual information,enhancing the model’s ability to recognize and locate objectives.Additionally,we collected and prepared the GKA dataset,sourced from real train tracks.Through testing on the GKA dataset and the publicly available NUE-DET dataset,our method outperforms general-purpose object detection algorithms.On the GKA dataset,our model achieved a mAP 0.5 value of 97.6%and a mAP 0.5:0.95 value of 83.9%,demonstrating excellent inference speed.YOLO-O2E is an algorithm for detecting anomalies in railway fasteners that is applicable in practical industrial settings,addressing the industry gap in rail fastener detection.