期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Study on determining of reinforced concrete false roof strength and design of reinforcement based on reliability theory 被引量:2
1
作者 Fan Wenlu Li Xibing Hu Guohong 《Engineering Sciences》 EI 2012年第5期65-70,共6页
Study on efficient mining of the steep incline and fractured ore-bodies in Yongshaba mine of Guizhou Kailin Group shows that ore-body is fractured and difficult to support the roadways in-vein.After research of the ac... Study on efficient mining of the steep incline and fractured ore-bodies in Yongshaba mine of Guizhou Kailin Group shows that ore-body is fractured and difficult to support the roadways in-vein.After research of the actual conditions about the ore-bodies,we have made the initial decision to adopt reconstruction of roof downward sublevel cut-and-fill mining.The men work safely under the false roof supporting the top plate.However,the difficult problem is how to determine the strength of the false roof.In this case,the method based on reliability theory has been put forward.Combined with elastic mechanics and field practice,when practical value of reliable probability is 90 %,the value of the false roof strength has been calculated,and the study shows that stope span greatly influences the false roof strength.With the strength of artificial roof,the reasonable reinforcement design ensures the false roof which can supply the demand of strength under large span and load. 展开更多
关键词 steep and fractured ore-bodies reinforced concrete false roof downward sublevel cut-and-fill reliability the-ory stope span reinforcement design
下载PDF
Shape design of the reinforcement for bending load-carrying capacity of under-matched butt joint under four-point bending load 被引量:1
2
作者 王佳杰 杨建国 +3 位作者 张敬强 董志波 方洪渊 刚铁 《China Welding》 EI CAS 2012年第3期50-54,共5页
To improve the bending load-carrying capacity ( BLCC) of under-matched butt joint under four-point bending load in the elastic stage, the shape design of the reinforcement is studied based on the theoretics of mecha... To improve the bending load-carrying capacity ( BLCC) of under-matched butt joint under four-point bending load in the elastic stage, the shape design of the reinforcement is studied based on the theoretics of mechanics of materials. The concept, criterion, realization condition and design proposal of equal bending load-carrying capacity (EBLCC) are put forward. The theoretical analysis results have been verified by the finite element method. The simulation results are coincident basically with the ones of theoretical analysis. The research results show that the shape design of the reinforcement of EBLCC can improve BLCC of under-matched butt joint and the unilateral-side type reinforcement can replace double-side symmetry 展开更多
关键词 under-matched joint equal bending load-carrying capacity shape design of the reinforcement finite elementmethod
下载PDF
Finite Element Method for Design of Reinforced Concrete Offshore Platforms
3
作者 Song Yupu and Wang Jian Associate Professor, Dept. of Civil Engineering, Dalian University of Technology, Dalian Lecturer, Dept. of Civil Engineering, Dalian University of Technology, Dalian 《China Ocean Engineering》 SCIE EI 1992年第1期27-36,共10页
A design method of reinforced concrete (R. C.) offshore platforms with nonlinear finite element analysis is proposed. According to the method, a computer program is developed. In this program nonlinear constitutive re... A design method of reinforced concrete (R. C.) offshore platforms with nonlinear finite element analysis is proposed. According to the method, a computer program is developed. In this program nonlinear constitutive relationships and strength criteria of concrete and steel bars are included, and the progressive cracking and crushing of the concrete are taken into account. Based on the stress distribution obtained by the nonlinear finite element analysis, the amount of reinforcement in the control sections can be computed and adjusted automatically by the program to satisfy the requirement of the design. The amount of reinforcement required in the control sections, which are obtained with the nonlinear finite element analysis, is agreeable to that obtained in the experiment. This shows that the design method of R. C. offshore platform with the nonlinear finite element method proposed by the authors is reliable for practical use. 展开更多
关键词 finite element method reinforced concrete offshore platform design method REINFORCEMENT
下载PDF
The Structural Behavior of Low/Medium/High Rise Concrete Office Buildings in Kuwait 被引量:1
4
作者 Tarek A. Awida 《Journal of Civil Engineering and Architecture》 2010年第10期59-65,共7页
The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of bu... The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait. 展开更多
关键词 Low/medium/high-rise structures office buildings finite element reinforced concrete analysis and design.
下载PDF
Slenderness Ratio Influence on the Structural Behavior of Residential Concrete Tall Buildings
5
作者 Tarek A. Awida 《Journal of Civil Engineering and Architecture》 2011年第6期527-534,共8页
The main concern of this paper is to study the influence of the building slenderness ratio on the structural behavior of the residential concrete tall buildings aiming to deepen structure and architect designers under... The main concern of this paper is to study the influence of the building slenderness ratio on the structural behavior of the residential concrete tall buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is emphasized only on Kuwait city design conditions for wind and seismic loadings. The paper presents an actual case study for adding two thirty stories residential towers with two different slenderness ratios to an existing residential complex. Wind loading is considered using both code values and wind tunnel results. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to verify that all the structural elements are designed to withstand factored gravity and lateral loads in a safe manner according to the international building codes. Analysis results are presented and discussed. A brief idea about foundation design of the new towers and its connection to the existing foundation is presented. Finally conclusions are summarized as guidelines for the structural professions of concrete residential tall buildings. 展开更多
关键词 Slenderness ratio residential tall buildings finite element reinforced concrete analysis and design.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部