期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
A Theoretical Investigation into the Orientation of Buckling Direction of the Reinforcing Fibers in EMC Laminate
1
作者 熊志远 JIN Dafeng +1 位作者 YANG Yongbao ZENG Duo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期148-153,共6页
Due to its high packaging strain and shape memory effect, elastic memory composite (EMC) has considerable potential application in future deployable space structures. Buckling of the reinforcing fibers is the primar... Due to its high packaging strain and shape memory effect, elastic memory composite (EMC) has considerable potential application in future deployable space structures. Buckling of the reinforcing fibers is the primary deformation mechanism of such a new class of functional materials to realize a higher folding strain than that of conventional fiber reinforced composites. In this paper, the orientation of buckling direction of the reinforcing fibers in EMC laminate will be theoretically analyzed to better understand such deformation mechanism. The results reveal that the bucking protruding from the edge produces the lower energy needed for EMC laminate. 展开更多
关键词 elastic memory composite buckling direction FOLDING reinforcing fiber
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
2
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
3
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 Carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artificial neural network and genetic algorithm 被引量:6
4
作者 Morteza Vadood Majid Safar Johari Ali Reza Rahai 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1937-1946,共10页
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po... While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96). 展开更多
关键词 hot mix asphalt fatigue property reinforced fiber artificial neural network genetic algorithm
下载PDF
Effects of Polypropylene Fibers on the Physical and Mechanical Properties of Recycled Aggregate Concrete 被引量:4
5
作者 Pierre Matar Gérard-Philippe Zéhil 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1327-1344,共18页
The viability of using polypropylene fibers(PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete ag... The viability of using polypropylene fibers(PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete aggregate(RCA). Mixes with different RCA replacement ratios and different PPF content were designed and tested. The test results showed that the addition of PPF did not change significantly the compressive strength and the density of the concrete, but slightly decreased its modulus of elasticity and Poisson’s ratio. The drop in the splitting tensile strength and the flexural strength due to RCA inclusions was to a large extent compensated by the PPF addition. The water absorption decreased and the percent voids increased with increased PPF addition. Correlations between the RCA content, the PPF content and the properties of concrete were studied. Useful regression models were proposed to predict the properties of concrete in relevant ranges of RCA and PPF content. 展开更多
关键词 CONCRETE recycled aggregate fiber reinforcement physical properties mechanical properties
下载PDF
Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite 被引量:3
6
作者 S.M.J.Razavi R.Esmaeely Neisiany +2 位作者 S.Nouri Khorasani S.Ramakrishna F.Berto 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期126-131,共6页
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t... This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites. 展开更多
关键词 Carbon fiber reinforced polymer Delamination Fracture test Nanofibers Al2O3 nanoparticles
下载PDF
The Influence of Two Natural Reinforcement Fibers on the Hygrothermal Properties of Earthen Plasters in Mogao Grottoes of China
7
作者 Wenbei Bi Zengfeng Yan +3 位作者 Huan Zhao Lixin Sun Xudong Wang Zhengmo Zhang 《Journal of Renewable Materials》 SCIE EI 2020年第12期1691-1710,共20页
Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Tw... Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Two different natural fibers,hemp fiber and cotton fiber,were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance.The two types of earthen plasters were studied:one containing hemp fiber in the fine plaster(HFP)and the other containing cotton fiber in the fine plaster(CFP).Specific heat capacity,dry thermal conductivity,water vapor permeability,and sorption isotherms were investigated.The results showed that the difference between two natural fibers has much more impact on the hygric properties(water vapor permeability and sorption isotherms)of earthen plasters than on their thermal performance(specific heat capacity and dry thermal conductivity).The CFP with higher density has higher thermal conductivity than the HFP with lower density.But no significant differences of specific heat capacity were observed.Compared with HFP,CFP used in murals can reduce the rate of water transfer and prevent salt from transferring water to the mural surface.The overall findings highlight that all these features of CFP are beneficial to the long-term preservation of murals.The study of the earthen plasters in Mogao Grottoes is of general significance,and the measured properties can be used to obtain coupled heat and moisture analysis of the earthen plasters and to dissect the degradation mechanism of murals. 展开更多
关键词 Earthen plasters natural reinforced fibers hygrothermal properties dry thermal conductivity water vapor permeability sorption isotherms
下载PDF
Shear Strength Evaluation of Concrete Beams Reinforced with BFRP Bars and Steel Fibers without Stirrups
8
作者 Smitha Gopinath S.Meenu A.Ramachandra Murthy 《Computers, Materials & Continua》 SCIE EI 2016年第2期81-103,共23页
This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams an... This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail.It is found that combining s teel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure.Further,the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams.Based on the review,the appropriate model was chosen and modified to predict the shear strength of BFRP reinforced beam along with steel fibers. 展开更多
关键词 Basalt fiber reinforced polymer(BFRP) Steel fibers Flexure Shear strength
下载PDF
Computational and Experimental Analyses of Detachment Force at the Interface between Carbon Fibers and Epoxy Resin
9
作者 Kazuki Mori Nobuhiko Matsumoto +1 位作者 Sukeharu Nomoto Kenji Tsuruta 《Open Journal of Composite Materials》 2017年第4期179-184,共6页
Herein, we used theoretical and experimental methods to investigate the shear fracture strengths of carbon fiber/epoxy resin interfaces. The shear strengths of carbon fiber and epoxy resin were measured using the micr... Herein, we used theoretical and experimental methods to investigate the shear fracture strengths of carbon fiber/epoxy resin interfaces. The shear strengths of carbon fiber and epoxy resin were measured using the microdroplet test, whereas interaction and binding energies were estimated using?Ab initio?and molecular dynamics methods. However, binding energies did not impact the shear strength volumes determined by microdroplet tests,?i.e., bonds between functional groups of the carbon filer and the epoxy resin were difficult to break. On the other hand, the interaction energies calculated for epoxy monomers were in good agreement with experimental data. Moreover, we determined the relationship between the simulated interaction energy and the shear fracture strength volume obtained using the microdroplet test. 展开更多
关键词 Carbon Fiber–Reinforced Composite Ab INITIO Method Molecular Dynamics Simulation MICRODROPLET Test
下载PDF
Microwave Absorption and Mechanical Properties of Short-cutted Carbon Fiber/glass Fiber Hybrid Veil Reinforced Epoxy Composites 被引量:1
10
作者 陈威 ZHEN Bowen +4 位作者 XIE Yuxuan 贺行洋 SU Ying WANG Jun WU Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期248-254,共7页
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)... This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties. 展开更多
关键词 microwave absorption fiber reinforced composites PAPERMAKING carbon fiber
下载PDF
Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review 被引量:1
11
作者 Brett Holmberg Liang Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1474-1489,共16页
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou... The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology. 展开更多
关键词 cemented paste backfill cementitious composites interfacial transition zone fiber reinforcement MULTIPHYSICS induced curing pressure
下载PDF
Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets
12
作者 Zhijie Fan Huaxin Liu +2 位作者 Genjin Liu Xuezhi Wang Wenqi Cui 《Journal of Renewable Materials》 SCIE EI 2023年第4期1763-1791,共29页
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba... The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete. 展开更多
关键词 Basalt fiber reinforced polymer polyvinyl chloride recycled aggregate concrete axial compression performance stress-strain relationships stress-strain model
下载PDF
High-sensitivity phase imaging eddy current magneto-optical system for carbon fiber reinforced polymers detection
13
作者 Jiang-Shan Ai Quan Zhou +5 位作者 Yi-Ping Liang Chun-Rui Feng Bing Long Li-Bing Bai Yong-Gang Wang Chao Ren 《Journal of Electronic Science and Technology》 EI CSCD 2023年第4期48-59,共12页
This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems... This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems. 展开更多
关键词 Carbon fiber reinforced polymers Defect detection Eddy current magneto-optical Nondestructive testing Phase imaging
下载PDF
Static Bending Creep Properties of Glass Fiber Surface Composite Wood
14
作者 Shang Zhang Jie Wang +4 位作者 Benjamin Rose Yushan Yang Qingfeng Ding Bengang Zhang Chunlei Dong 《Journal of Renewable Materials》 SCIE EI 2023年第6期2881-2891,共11页
To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevic... To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevicana,P),the performance of Normal Creep(NC)and Mechanical Sorptive Creep(MSC)of GFRP and their influencing factors were tested and analyzed.The test results and analysis show that:(1)The MOE and MOR of Poplar were increased by 17.06%and 10.00%respectively by the glass fiber surface reinforced composite.(2)The surface reinforced P with glass fiber cloth only exhibits the NC pattern of wood and loses the MSC characteristics of wood,regardless of the constant or alternating changes in relative humidity.(3)The instantaneous elastic deformation,viscoelastic deformation,viscous deformation and total creep deflection of GFRP are positively correlated with the stress level of the external load applied to the specimen.Still,the specimen’s creep recovery rate is negatively correlated with the stress level of the external load applied to the specimen.The static creep deflection and viscous deformation of GFRP increase with the increase of the relative humidity of the environment.(4)The MSC maximum creep deflection of GFRP increased by only 7.41%over the NC maximum creep deflection,but the MSC maximum creep deflection of P increased by 199.25%over the NC maximum creep deflection.(5)The Burgers 4-factor model and the Weibull distribution equation can fit the NC and NC recovery processes of GFRP well. 展开更多
关键词 Glass fiber reinforced composite wood Normal Creep(NC) wood creep Mechanical Sorptive Creep(MSC) creep model
下载PDF
An Alternative Method for Incorporating Fiber Meshes in Complete Upper Dentures
15
作者 Anthony Prombonas Efthymia Sklavou +2 位作者 Alexandra Ioannidou Eleni Kosma Katerina Orfanou 《Journal of Biomedical Science and Engineering》 CAS 2023年第3期43-52,共10页
The most commonly used material for constructing complete dentures is polymethyl methacrylate (PMMA). However, the strength characteristics of PMMA, such as impact strength and fatigue strength, are poor, and fracturi... The most commonly used material for constructing complete dentures is polymethyl methacrylate (PMMA). However, the strength characteristics of PMMA, such as impact strength and fatigue strength, are poor, and fracturing of PMMA dentures is a common problem in prosthodontic practice. Reinforcing PMMA with various materials, such as carbon fibers, glass fibers (fiberglass), and ultrahigh modulus polyethylene fibers, has been suggested to strengthen the denture-base material. A common problem encountered when packing the resin on these specimens is fiber slippage beyond the denture edges. The present study proposes an alternative method of incorporating fiber meshes into complete dentures, whereby a thin filament of self-polymerizing resin at the perimeter of the fiber mesh is produced, giving a clear and stable shape to the mesh that fits the upper jaw cast. During placement of the shaped mesh on the cast, a positive-negative relationship is created between the mesh and cast, which immobilizes the mesh during the incorporation process. 展开更多
关键词 Complete Upper Dentures fibers Reinforcement Fiber Mesh
下载PDF
Effect of Steel Fiber on Concrete’s Compressive Strength
16
作者 Mohammed Saed Yusuf Abdirisak Bashir Isak +4 位作者 Guled Ali Mohamud Abdullahi Hashi Warsame Yahye Ibrahim Osman Abdullahi Husein Ibrahim Liban Abdi Aziz Elmi 《Open Journal of Civil Engineering》 CAS 2023年第1期192-197,共6页
The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers... The general goal of this research is to investigate whether steel fiber has a significant “positive” or “negative” influence on concrete compressive strength, as well as the optimal steel fiber ratio that delivers best result. Manually, cement, fine aggregates, coarse aggregates, steel fibers, and water were mixed together properly. A slump test was carried on the mixed concrete. After determining the workability, the mixed concrete was poured into cubes dimension 150 mm × 150 mm × 150 mm and left for 24 hours. After 24 hours, the samples were removed from the mold and placed in a water tank to cure for 7 to 28 days. The cube was tested for compressive and flexural strength in a universal testing machine after the samples had cured for the required 7 - 28 days. This study focuses on how to obtain high strength concrete using with steel fiber in the Conventional mix ratio to enhance concrete strength. Concrete reinforcement using steel fibers alters the characteristics of the concrete, allowing it to withstand fracture and hence improve its mechanical qualities. This study reports on an experimental study that reveals the effect of steel fiber on concrete compressive strength and the optimal steel fiber ratio that produces the best results. Steel fiber reinforcing improved the compressive strength of concrete. The average compressive strength of normal M25 concrete with 0% steel fibers and curing ages of 7 and 28 days was determined to be 22.97 N/mm<sup>2</sup> and 25.78 N/mm<sup>2</sup>, respectively. The steel fibers are then added in various concentrations, such as 1%, 2%, and 3%, with aspect ratios of 70. The compressive strength of concrete with 1%, 2%, and 3% steel fiber with an aspect ratio of 70 was examined at 7 days and found to be 23.96, 24.80, and 26.14 N/mm<sup>2</sup> correspondingly. 展开更多
关键词 Steel Fiber Reinforced Concrete Fiber Reinforcement Compression Strength of Concrete Improvement Compression Strength
下载PDF
Thermal Characteristics of Earth Blocks Stabilized by Rice Husks
17
作者 Mbairangone Samson Ntamack Guy Edgar +2 位作者 Bianzeube Tikri Tsopmo Fabien Akana Ouanmini Bobet 《Open Journal of Applied Sciences》 2023年第10期1796-1819,共24页
The objective of this study is to determine the thermal characteristics of bricks produced from clay soils in Chad using the asymmetric plane method. Indeed, in Sahelian countries like Chad, temperature variations are... The objective of this study is to determine the thermal characteristics of bricks produced from clay soils in Chad using the asymmetric plane method. Indeed, in Sahelian countries like Chad, temperature variations are excessive. The study of the thermal behavior of a recyclable local material with low environmental impact could not only improve thermal comfort in homes, but also help mitigate the effects of climate change. It is in this context that this study is envisaged. Before carrying out these measurements, we first produced different formulations of soil blocks 0%, 1% 1.5%, 2% and 2.5% by mass of rice husks (1.25 mm sieve refusal). Brick specimens of dimensions 10 cm × 10 cm × 1 cm were developed at 0 day, 7 days and 14 days of maturation of the formulated pastes. After, those bricks were submitted after drying to the measurements of various thermal parameters: in particular the conductivity, the effusivity, the volumetric capacity and the diffusivity. The obtained results show that the addition of rice husks to clay soils improves conductivity by 13% to 49%, effusivity by 19% to 24%, volumetric capacity by 23% to 27%, and diffusivity by 47% to 58% for the Moundou soils, depending on the maturation period. For the N’Djamena soil, these thermal characteristics are improved from 11% to 38%, from 11% to 13%, from 40% to 47% and from 39% to 40% respectively. 展开更多
关键词 Thermal Conductivity BRICKS MIXTURES Fiber Reinforced Material Thermal Confort
下载PDF
碳纤维增强复合材料加固混凝土粘结性能试验 被引量:12
18
作者 佘泽昇 雷冬 +2 位作者 何锦涛 朱飞鹏 白鹏翔 《科学技术与工程》 北大核心 2022年第6期2428-2436,共9页
碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)加固混凝土技术在桥梁工程与建筑工程中有大量应用,而直接影响工程结构加固维修的关键因素是其界面粘结性能,因此开展相关试验研究对保障工程安全具有重大意义。以一种基于专... 碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)加固混凝土技术在桥梁工程与建筑工程中有大量应用,而直接影响工程结构加固维修的关键因素是其界面粘结性能,因此开展相关试验研究对保障工程安全具有重大意义。以一种基于专门设计的试验装置进行弯曲剪切试验来研究CFRP-混凝土界面的粘结性能。利用数字图像相关(digital image correlation,DIC)法得到的应变场确定碳纤维布的脱粘长度,同时对碳纤维增强材料的性能进行了理论分析,探讨了试验中的力学响应。结果表明:弯剪破坏的原因是弯矩的增大导致界面粘结强度和极限荷载的降低。通过对比弯剪试验和理论应变分布曲线,证明试验的有效性。粘结区在弯曲作用下产生的正应力有一个固定的有效区域,在该区域以外不会产生正应力。因此,在工程应用中,确定碳纤维布板的剥离长度可以减少维护工作,碳纤维布-钢筋混凝土在受弯曲和拉伸的共同作用下,可以在加载端有效应力区域内进行再加固,增加使用寿命。 展开更多
关键词 碳纤维增强复合材料(carbon fiber reinforced polymer CFRP)-混凝土 弯剪试验 界面粘结应力 弯剪破坏 本构模型
下载PDF
Durability of Concrete Subjected to the Combined Actions of Flexural Stress,Freeze-thaw Cycles and Bittern Solutions 被引量:15
19
作者 余红发 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期893-900,共8页
Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated u... Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated under the attacks of chemical solution, and combination of external flexural stress and chemical solution. Four kinds of bitterns from salt lakes in Sinkiang, Qinghai, Inner Mongolia and Tibet provinces of China were used as chemical attack solutions. The relative dynamic modulus (RDM) was used as an index for evaluating the damage degree during the course of chemical attack and stress corrosion. The experimental results show that the freeze-thaw durability of concrete is visibly reduced in the present of the flexural stress, i e, stress accelerates the damage process. In order to quantify the stress accelerated effect, a stress accelerating coefficient was proposed. The stress accelerating coefficient is closely related with the types of bitterns and the numbers of freeze-thaw cycles is. The more numbers of freeze-thaw cycles is, the greater the stress accelerating coefficient for various concretes will be. In addition, there also exists a critical ratio of external stress to the maximum flexural stress. If the stress ratio exceeds the critical one, the freeze-thaw durability of various concretes will be greatly decreased compared to the responding concretes without applied stress. The critical stress ratio of OPC, HSC and SFRHSC is 0.30, 0.40 and 0.40, respectively, indicating that HSC and SFRHSC have advantages over OPC and are suitable to use in the bittern erosion regions. 展开更多
关键词 high strength concrete steel fiber reinforced high strength concrete chemicalattack stress corrosion freezing-thawing durability BITTERN
下载PDF
Axial Bearing Capacity of Short FRP Confined Concrete-filled Steel Tubular Columns 被引量:7
20
作者 刘兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期454-458,共5页
The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined wit... The bearing capacity of FRP confined concrete-filled steel tubular (FRP-CFST) columns under axial compression was investigated. This new type of composite column is a concrete-filled steel tube (CFST) confined with fiber-reinforced polymer (FRP) wraps. Totally 11 short column specimens were tested to failure under axial compression. The influences of the type and quantity of FRP, the thickness of steel tube and the concrete strength were studied. It was found that the bearing capacity of short FRP-CFST column was much higher than that of comparable CFST column. Furthermore, the formulas for calculating the bearing capacity of the FRP-CFST columns are proposed. The analytical calculated results agree well with the experimental results. 展开更多
关键词 COLUMNS concrete-filled steel tubes (CFST) fiber reinforced polymer (FRP) CONFINEMENT bearing capacity.
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部