期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-amplitude pressure fluctuations of a pump-turbine with large head variable ratio during the turbine load rejection process 被引量:1
1
作者 FU XiaoLong LI DeYou +2 位作者 SONG YeChen WANG HongJie WEI XianZhu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第9期2575-2585,共11页
Large-head variable-amplitude pump turbines(PTs) encounter serious transient hydraulic instability issues. To explore the evolution mechanisms of pressure fluctuations(PFs) and flow patterns inside large-head variable... Large-head variable-amplitude pump turbines(PTs) encounter serious transient hydraulic instability issues. To explore the evolution mechanisms of pressure fluctuations(PFs) and flow patterns inside large-head variable-amplitude PTs, the load rejection process(LRP) was investigated using a one-and three-dimensional coupled flow simulation approach. The temporal,spatial, and frequency characteristics of the fluctuating pressures were analyzed for four monitoring points using a combined time-frequency analysis approach. The results indicated that PFs during the LRP of large-head variable-amplitude PTs had a new fluctuation frequency component related to Dean vortices(DVs) in the volute, in addition to the common fluctuation frequency components related to rotor-stator interaction phenomena and local backflow vortices near the impeller inlet. The PF frequency component existed throughout the LRP and had a significant influence on the transient maximum pressure at the volute end. This study provides a useful theoretical guide for the design and optimization of large-head variable-amplitude PTs. 展开更多
关键词 large-head variable-amplitude pump turbine load rejection process 1D-3D flow simulation pressure fluctuation flow pattern evolution
原文传递
Optimization of the co-closing law of guide vanes and blades for bulb turbines based on CFD
2
作者 Hui Liu Yun-fa Lin +4 位作者 Yong-guang Cheng Song Xue Mao-jia Tang Jian Zhang Jia-yi Fan 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第2期363-377,共15页
The load rejection transient process of bulb turbine units is critical to safety of hydropower stations,and determining appropriate closing laws of guide vanes(GVs)and runner blades(RBs)for this process is of signific... The load rejection transient process of bulb turbine units is critical to safety of hydropower stations,and determining appropriate closing laws of guide vanes(GVs)and runner blades(RBs)for this process is of significance.In this study,we proposed a procedure to optimize the co-closing law of GVs and RBs by using computational fluid dynamics(CFD),combined with the design of experiment(DOE)method,approximation model,and genetic optimization algorithm.The sensitivity of closing law parameters on the histories of head,speed,and thrust was analyzed,and a two-stage GVs’closing law associating with a linear RBs’closing law was proposed.The results show that GVs dominate the transient characteristics by controlling the change of discharge.Speeding GVs’first-stage closing speed while shortening first-stage closing time can not only significantly reduce the maximum rotational speed but also suppress the water hammer pressure;slowing GVs’second-stage closing speed is conducive to controlling the maximum reverse axial force.RBs directly affect the runner force.Slowing RBs’closing speed can further reduce the rotational speed and the maximum reverse axial force.The safety margin of each control parameter,flow patterns,and pressure pulsations of a practical hydropower station were all improved after optimization,demonstrating the effectiveness of this method. 展开更多
关键词 Bulb turbine load rejection transient process double regulation closing law OPTIMIZATION computational fluid dynamics(CFD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部