Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed bas...Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.展开更多
The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying L...The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.展开更多
Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Cons...Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications.展开更多
In order to make motion planning fitting practice,many characteristic of CNC trajectory motion are discussed, such as the geometric function,the motion and the time.It is found that the relation between orbit function...In order to make motion planning fitting practice,many characteristic of CNC trajectory motion are discussed, such as the geometric function,the motion and the time.It is found that the relation between orbit function and motional parame- ter,so the differential equation about the trajectory motion be set-up by the goal of trajectory motion.The actual motion process is defined as reference time to link planning and practice.Present a new movement planning method based on self-defining time.At rest state,the differential simultaneous equation can be calculated according geometric characteristic analysis,it can be get that simple function consisted of coordinate and reference time variants.At motive state,dynamic parameter can be worked out accord- ing practical value of reference time,It is proved by experiment and simulation that it is a good way to control geometry and motion comprehensively,to reduce computation times and to increase the ability of environmental adaptation for path展开更多
Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd st...Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes,which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades.Trajectory clustering has become one of the most popular methods in VMS.However,complex data,such as a large number of samples and parameters,makes it difficult for trajectory clustering to work well with accurate motion segmentation results.This study introduces a spatial-angular stacked sparse autoencoder model(SA-SSAE)with l2-regularization and softmax,a powerful deep learning method for visual motion segmentation to cluster similar motion patterns that belong to the same cluster.The proposed model can extract meaningful high-level features using only spatial-angular features obtained from refined tracklets(a.k.a‘trajectories’).We adopt l2-regularization and sparsity regularization,which can learn sparse representations of features,to guarantee the sparsity of the autoencoders.We employ the softmax layer to map the data points into accurate cluster representations.One of the best advantages of the SA-SSAE framework is it can manage VMS even when individuals move around randomly.This framework helps cluster the motion patterns effectively with higher accuracy.We put forward a new dataset with itsmanual ground truth,including 21 crowd videos.Experiments conducted on two crowd benchmarks demonstrate that the proposed model can more accurately group trajectories than the traditional clustering approaches used in previous studies.The proposed SA-SSAE framework achieved a 0.11 improvement in accuracy and a 0.13 improvement in the F-measure compared with the best current method using the CUHK dataset.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52222215,52072051)Chongqing Municipal Natural Science Foundation of China(Grant No.CSTB2023NSCQ-JQX0003).
文摘Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method.
文摘The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.
基金partly supported by the National Natural Science Foundation of China(61903034,U1913203,61973034,91120003)the Program for Changjiang Scholars and Innovative Research Team in University(IRT-16R06,T2014224)+1 种基金China Postdoctoral Science Foundation funded project(2019TQ0035)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications.
基金Supported by the Natural Science Foundation of Education Committee of Sichuan Province(2004A163)
文摘In order to make motion planning fitting practice,many characteristic of CNC trajectory motion are discussed, such as the geometric function,the motion and the time.It is found that the relation between orbit function and motional parame- ter,so the differential equation about the trajectory motion be set-up by the goal of trajectory motion.The actual motion process is defined as reference time to link planning and practice.Present a new movement planning method based on self-defining time.At rest state,the differential simultaneous equation can be calculated according geometric characteristic analysis,it can be get that simple function consisted of coordinate and reference time variants.At motive state,dynamic parameter can be worked out accord- ing practical value of reference time,It is proved by experiment and simulation that it is a good way to control geometry and motion comprehensively,to reduce computation times and to increase the ability of environmental adaptation for path
基金This research work is supported by the Deputyship of Research&Innovation,Ministry of Education in Saudi Arabia(Grant Number 758).
文摘Visual motion segmentation(VMS)is an important and key part of many intelligent crowd systems.It can be used to figure out the flow behavior through a crowd and to spot unusual life-threatening incidents like crowd stampedes and crashes,which pose a serious risk to public safety and have resulted in numerous fatalities over the past few decades.Trajectory clustering has become one of the most popular methods in VMS.However,complex data,such as a large number of samples and parameters,makes it difficult for trajectory clustering to work well with accurate motion segmentation results.This study introduces a spatial-angular stacked sparse autoencoder model(SA-SSAE)with l2-regularization and softmax,a powerful deep learning method for visual motion segmentation to cluster similar motion patterns that belong to the same cluster.The proposed model can extract meaningful high-level features using only spatial-angular features obtained from refined tracklets(a.k.a‘trajectories’).We adopt l2-regularization and sparsity regularization,which can learn sparse representations of features,to guarantee the sparsity of the autoencoders.We employ the softmax layer to map the data points into accurate cluster representations.One of the best advantages of the SA-SSAE framework is it can manage VMS even when individuals move around randomly.This framework helps cluster the motion patterns effectively with higher accuracy.We put forward a new dataset with itsmanual ground truth,including 21 crowd videos.Experiments conducted on two crowd benchmarks demonstrate that the proposed model can more accurately group trajectories than the traditional clustering approaches used in previous studies.The proposed SA-SSAE framework achieved a 0.11 improvement in accuracy and a 0.13 improvement in the F-measure compared with the best current method using the CUHK dataset.