The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob...The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.展开更多
Objective To investigate the relationship between olanzapine induced metabolic disturbance related measures and TCF7L2 gene expression.Methods Thirty adult C57BL/61 mice,in accordance with the random number table,were...Objective To investigate the relationship between olanzapine induced metabolic disturbance related measures and TCF7L2 gene expression.Methods Thirty adult C57BL/61 mice,in accordance with the random number table,were divided into 3 groups that were展开更多
In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurement...In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurements and the elimination of systematic error among the relative measurements have been carded out in this paper. Thus an unified temporal gravity change system with absolute reference has been established. On the basis of this, the crustal subsidence effect on gravity, which belongs to non-tectonic factor, is analyzed and the station displacement corrections are carried out, so that the long-wave disturbance is eliminated. So far our following aims are realized: the advantages of the absolute and relative measurement methods are complementary to each other; the contradiction and environment disturbance are eliminated; the amounts of information are enlarged; the sampling interval of time domain is compressed. In a word, the ability of identifying the tectonic activity process is enhanced. The results show that: there are systematic errors between the two groups of relative measurements and within the data of 10 campaigns ; the uneven local crustal subsidence in the southeast of the study area results in a linear rise of gravity value at 10 stations; they can be corrected by the regression analysis. The maps of revised temporal gravity change can obviously and integrally reflect the Ms=5.0 earthquake in Guye on October 6, 1995.展开更多
In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital ...In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital synthesizer(DDS)as signal generator is used as the bridge excitation source,and the bridge is automatically balanced by adjusting and measuring the voltage ratio.Using standard resistors,the system can achieve high precision measurement of four-terminal pair inductors in the frequency range of 100Hz-100kHz.Aiming at the low efficiency of bridge balancing,an iterative balancing algorithm based on the steepest descent method is proposed.In order to suppress the interference caused by the initial phase change and non-integer periodic sampling,the high-precision measurement of the complex impedance of inductance is realized based on the all-phase fast Fourier transform(apFFT).Finally,the corresponding measurement system is built and the inductance measurement experiment is carried out.The experimental results show that the relative error of the system for inductance measurement can be as low as 0.009%,and the optimal relative measurement uncertainty of the system can reach 9.89×10^(-4)compared with 5×10^(-5)of commercial impedance analyzer.展开更多
a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radic...a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.展开更多
Measure index system of technical innovation in medium and smallmanufacturing enterprises is established according to principles of exploration, adaptability,standardization, generalization, feasibility, comparability...Measure index system of technical innovation in medium and smallmanufacturing enterprises is established according to principles of exploration, adaptability,standardization, generalization, feasibility, comparability and combination of economic benefit andcontinual development. It includes index of technical innovation capacity, informationaladministration on technical innovation, and investment of technical innovation, economic benefit,green technical level, social contribution and other influential indexes. Approach to measure oftechnical innovation in medium and small manufacturing enterprises is presented based on combinationof grey relation and fuzzy hiberarchy analysis, and conclusions are drawn based on practicalanalysis of 20 medium and small enterprises, which provides the basis for the medium and smallenterprises to select technical innovation policies and the government to constitute relativepolicies.展开更多
Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a technique develope...Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a technique developed in this work to simultaneously detect influential data points and select optimal predictor variables. It is an addition to the body of existing literature in this area of study to both having an alternative to the AIC and Mallow’s Cp Statistic-based RIM as well as conditions of no influence, some sort of influence and perfectly single outlier data point in an entire data set which are proposed in this work. The method is implemented in R by an algorithm that iterates over all data points;deleting data points one at a time while computing BICs and selecting optimal predictors alongside RIMs. From the analyses done using evaporation data to compare the proposed method and the existing methods, the results show that the same data cases selected as having high influences by the two existing methods are also selected by the proposed method. The three methods show same performance;hence the relevance of the BIC-based RIM cannot be undermined.展开更多
The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions ca...The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.展开更多
On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings...On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.展开更多
Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational ...Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational analysis theory to screen out candidate drill bits with reference values.A new comprehensive performance evaluation model of drill bit was established by constructing the absolute ideal solution,changing the relative distance measurement method,and introducing entropy weight to work out the closeness between the candidate drill bits and ideal drill bits and select the reasonable drill bit.Through the construction of absolute ideal solution,improvement of relative distance measurement method and introduction of entropy weight,the inherent defects of TOPSIS decision analysis method,such as non-absolute order,reverse order and unreasonable weight setting,can be overcome.Simple in calculation and easy to understand,the new bit selection method has good adaptability to drill bit selection using dynamic change drill bit database.Field application has proved that the drill bits selected by the new drill bit selection method had significant increase in average rate of penetration,low wear rate,and good compatibility with the drilled formations in actual drilling.This new method of drill bit selection can be used as a technical means to select drill bits with high efficiency,long life and good economics in oilfields.展开更多
This paper investigates the problem of cooperative localization(CL)for a multi-robot system(MRS)under dynamic measurement topology,which involves a group of robots collectively estimating their poses with respect to a...This paper investigates the problem of cooperative localization(CL)for a multi-robot system(MRS)under dynamic measurement topology,which involves a group of robots collectively estimating their poses with respect to a common reference frame using ego-motion measurements and robot-to-robot relative measurements.The authors provide a theoretical analysis of the time-varying unobservable subspace and propose a consistent cooperative localization algorithm.First,the authors introduce the relative measurement graph(RMG)to represent the relative pose measurements obtained by the MRS at each instant.Then,the authors derive the local observability matrix over a time interval.An equivalent relationship is established between the local observability matrix and the spectral matrices of the RMG.Moreover,the authors present a method for constructing the unobservable subspace based on the RMG under different topology conditions.Based on this analysis,the authors design a consistent cooperative localization algorithm that satisfies the constraints of the time-varying unobservable subspace.An analytical optimal solution is derived for the constrained optimization problem.Monte Carlo numerical simulations are conducted to demonstrate the consistency and accuracy of the proposed method.展开更多
Radio Frequency(RF) technology represents a high-precision relative navigation solution that has significant potential for application to earth-orbiting satellites. In precision applications, multipath errors dominate...Radio Frequency(RF) technology represents a high-precision relative navigation solution that has significant potential for application to earth-orbiting satellites. In precision applications, multipath errors dominate the total error because observables, which are used to estimate carrier-phase integer ambiguity, are not always subject to a Gaussian distribution when dualfrequency ambiguity estimation methods are used in the presence of multipath. As it has been shown that ranging observables obey a Gaussian mixture distribution, this study proposes improvements to the accuracy of estimation based on multipath mitigation founded on the Gaussian mixture model. To this end, such a model is created for integer ambiguity resolution in the presence of multipath, using which the theoretical error in dual-frequency ambiguity estimation is derived.Expectation Maximization(EM), which aids dual-frequency ambiguity estimation, is subsequently proposed to reduce the effect of multipath errors. Finally, two experimental scenarios are implemented to test the performance of the proposed method. The results show that EM-aided dualfrequency ambiguity estimation reduces the range error to approximately 20% in comparison with simple dual-frequency ambiguity estimation. Therefore the proposed technique is effective for multipath mitigation in RF relative measurement.展开更多
An aided Inertial Navigation System(INS)is increasingly exploited in precise engineering surveying,such as railway track irregularity measurement,where a high relative measurement accuracy rather than absolute accurac...An aided Inertial Navigation System(INS)is increasingly exploited in precise engineering surveying,such as railway track irregularity measurement,where a high relative measurement accuracy rather than absolute accuracy is emphasized.However,how to evaluate the relative measurement accuracy of the aided INS has rarely been studied.We address this problem with a semi-analytical method to analyze the relative measurement error propagation of the Global Navigation Satellite System(GNSS)and INS integrated system,specifically for the railway track irregularity measurement application.The GNSS/INS integration in this application is simplified as a linear time-invariant stochastic system driven only by white Gaussian noise,and an analytical solution for the navigation errors in the Laplace domain is obtained by analyzing the resulting steady-state Kalman filter.Then,a time series of the error is obtained through a subsequent Monte Carlo simulation based on the derived error propagation model.The proposed analysis method is then validated through data simulation and field tests.The results indicate that a 1 mm accuracy in measuring the track irregularity is achievable for the GNSS/INS integrated system.Meanwhile,the influences of the dominant inertial sensor errors on the final measurement accuracy are analyzed quantitatively and discussed comprehensively.展开更多
For any Pisot number β it is known that the set F(β) ={t : limn→∞‖tβn‖ = 0} is countable, where ‖α‖ is the distance between a real number a and the set of integers. In this paper it is proved that every m...For any Pisot number β it is known that the set F(β) ={t : limn→∞‖tβn‖ = 0} is countable, where ‖α‖ is the distance between a real number a and the set of integers. In this paper it is proved that every member in this set is of the form cβn, where n is a nonnegative integer and e is determined by a linear system of equations. Furthermore, for some self-similar measures μ associated with β, the limit at infinity of the Fourier transforms limn→μ(tβn)≠0 if and only if t is in a certain subset of F(β). This generalizes a similar result of Huang and Strichartz.展开更多
文摘The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.
文摘Objective To investigate the relationship between olanzapine induced metabolic disturbance related measures and TCF7L2 gene expression.Methods Thirty adult C57BL/61 mice,in accordance with the random number table,were divided into 3 groups that were
基金National Natural Science Foundation of China (49974019, 40574020, 10371012).
文摘In Capital Circle area, there are three groups of repeated gravity measurements observed by different institutes using different instruments or methods. The simultaneous adjustment of absolute and relative measurements and the elimination of systematic error among the relative measurements have been carded out in this paper. Thus an unified temporal gravity change system with absolute reference has been established. On the basis of this, the crustal subsidence effect on gravity, which belongs to non-tectonic factor, is analyzed and the station displacement corrections are carried out, so that the long-wave disturbance is eliminated. So far our following aims are realized: the advantages of the absolute and relative measurement methods are complementary to each other; the contradiction and environment disturbance are eliminated; the amounts of information are enlarged; the sampling interval of time domain is compressed. In a word, the ability of identifying the tectonic activity process is enhanced. The results show that: there are systematic errors between the two groups of relative measurements and within the data of 10 campaigns ; the uneven local crustal subsidence in the southeast of the study area results in a linear rise of gravity value at 10 stations; they can be corrected by the regression analysis. The maps of revised temporal gravity change can obviously and integrally reflect the Ms=5.0 earthquake in Guye on October 6, 1995.
基金National Key Research and Development Plan Project(No.2020YFB2010800)National Natural Science Foundation of China(Nos.61905175,51775377,61971307)+4 种基金Fok Ying Tung Education Foundation(No.171055)China Postdoctoral Science Foundation(No.2020M680878)Guangdong Province Key Research and Development Plan Project(No.2020B0404030001)Tianjin Science and Technology Plan Project(No.20YDTPJC01660)Project of Foreign Affairs Committee of China Aviation Development Sichuan Gas Turbine Research Institute(Nos.GJCZ-2020-0040,GJCZ-2020-0041)。
文摘In order to achieve high precision measurement of inductance in a wide frequency range,a method of inductance measurement based on double-excitation auto-balancing bridge is proposed.In this method,the direct digital synthesizer(DDS)as signal generator is used as the bridge excitation source,and the bridge is automatically balanced by adjusting and measuring the voltage ratio.Using standard resistors,the system can achieve high precision measurement of four-terminal pair inductors in the frequency range of 100Hz-100kHz.Aiming at the low efficiency of bridge balancing,an iterative balancing algorithm based on the steepest descent method is proposed.In order to suppress the interference caused by the initial phase change and non-integer periodic sampling,the high-precision measurement of the complex impedance of inductance is realized based on the all-phase fast Fourier transform(apFFT).Finally,the corresponding measurement system is built and the inductance measurement experiment is carried out.The experimental results show that the relative error of the system for inductance measurement can be as low as 0.009%,and the optimal relative measurement uncertainty of the system can reach 9.89×10^(-4)compared with 5×10^(-5)of commercial impedance analyzer.
文摘a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.
基金This project is supported by National Natural Science Foundation of China(No.70171039, No.70131010)Provincial Science Foundation of Heilongjiang, China (No.G01-09).
文摘Measure index system of technical innovation in medium and smallmanufacturing enterprises is established according to principles of exploration, adaptability,standardization, generalization, feasibility, comparability and combination of economic benefit andcontinual development. It includes index of technical innovation capacity, informationaladministration on technical innovation, and investment of technical innovation, economic benefit,green technical level, social contribution and other influential indexes. Approach to measure oftechnical innovation in medium and small manufacturing enterprises is presented based on combinationof grey relation and fuzzy hiberarchy analysis, and conclusions are drawn based on practicalanalysis of 20 medium and small enterprises, which provides the basis for the medium and smallenterprises to select technical innovation policies and the government to constitute relativepolicies.
文摘Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a technique developed in this work to simultaneously detect influential data points and select optimal predictor variables. It is an addition to the body of existing literature in this area of study to both having an alternative to the AIC and Mallow’s Cp Statistic-based RIM as well as conditions of no influence, some sort of influence and perfectly single outlier data point in an entire data set which are proposed in this work. The method is implemented in R by an algorithm that iterates over all data points;deleting data points one at a time while computing BICs and selecting optimal predictors alongside RIMs. From the analyses done using evaporation data to compare the proposed method and the existing methods, the results show that the same data cases selected as having high influences by the two existing methods are also selected by the proposed method. The three methods show same performance;hence the relevance of the BIC-based RIM cannot be undermined.
基金supported by the Research Fund Program of Institute of Seismology, Chinese Earthquake Administration (IS201226045)the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (SKLGED2013-3-7-E)the National Natural Science Foundation of China (41404065)
文摘The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.
文摘On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.
基金Supported by China National Science and Technology Major Project(2016ZX05020-006)。
文摘Considering the stratum anti-drilling ability,drill bit working conditions,drill bit application effect and drill bit economic benefits,the similarity of stratum anti-drilling ability was evaluated by grey relational analysis theory to screen out candidate drill bits with reference values.A new comprehensive performance evaluation model of drill bit was established by constructing the absolute ideal solution,changing the relative distance measurement method,and introducing entropy weight to work out the closeness between the candidate drill bits and ideal drill bits and select the reasonable drill bit.Through the construction of absolute ideal solution,improvement of relative distance measurement method and introduction of entropy weight,the inherent defects of TOPSIS decision analysis method,such as non-absolute order,reverse order and unreasonable weight setting,can be overcome.Simple in calculation and easy to understand,the new bit selection method has good adaptability to drill bit selection using dynamic change drill bit database.Field application has proved that the drill bits selected by the new drill bit selection method had significant increase in average rate of penetration,low wear rate,and good compatibility with the drilled formations in actual drilling.This new method of drill bit selection can be used as a technical means to select drill bits with high efficiency,long life and good economics in oilfields.
文摘This paper investigates the problem of cooperative localization(CL)for a multi-robot system(MRS)under dynamic measurement topology,which involves a group of robots collectively estimating their poses with respect to a common reference frame using ego-motion measurements and robot-to-robot relative measurements.The authors provide a theoretical analysis of the time-varying unobservable subspace and propose a consistent cooperative localization algorithm.First,the authors introduce the relative measurement graph(RMG)to represent the relative pose measurements obtained by the MRS at each instant.Then,the authors derive the local observability matrix over a time interval.An equivalent relationship is established between the local observability matrix and the spectral matrices of the RMG.Moreover,the authors present a method for constructing the unobservable subspace based on the RMG under different topology conditions.Based on this analysis,the authors design a consistent cooperative localization algorithm that satisfies the constraints of the time-varying unobservable subspace.An analytical optimal solution is derived for the constrained optimization problem.Monte Carlo numerical simulations are conducted to demonstrate the consistency and accuracy of the proposed method.
基金supported by the National Natural Science Foundation of China(No.91438116)the Program for New Century Excellent Talents of China(No.NCET-12-0030)
文摘Radio Frequency(RF) technology represents a high-precision relative navigation solution that has significant potential for application to earth-orbiting satellites. In precision applications, multipath errors dominate the total error because observables, which are used to estimate carrier-phase integer ambiguity, are not always subject to a Gaussian distribution when dualfrequency ambiguity estimation methods are used in the presence of multipath. As it has been shown that ranging observables obey a Gaussian mixture distribution, this study proposes improvements to the accuracy of estimation based on multipath mitigation founded on the Gaussian mixture model. To this end, such a model is created for integer ambiguity resolution in the presence of multipath, using which the theoretical error in dual-frequency ambiguity estimation is derived.Expectation Maximization(EM), which aids dual-frequency ambiguity estimation, is subsequently proposed to reduce the effect of multipath errors. Finally, two experimental scenarios are implemented to test the performance of the proposed method. The results show that EM-aided dualfrequency ambiguity estimation reduces the range error to approximately 20% in comparison with simple dual-frequency ambiguity estimation. Therefore the proposed technique is effective for multipath mitigation in RF relative measurement.
基金the National Natural Science Foundation of China(41904019).
文摘An aided Inertial Navigation System(INS)is increasingly exploited in precise engineering surveying,such as railway track irregularity measurement,where a high relative measurement accuracy rather than absolute accuracy is emphasized.However,how to evaluate the relative measurement accuracy of the aided INS has rarely been studied.We address this problem with a semi-analytical method to analyze the relative measurement error propagation of the Global Navigation Satellite System(GNSS)and INS integrated system,specifically for the railway track irregularity measurement application.The GNSS/INS integration in this application is simplified as a linear time-invariant stochastic system driven only by white Gaussian noise,and an analytical solution for the navigation errors in the Laplace domain is obtained by analyzing the resulting steady-state Kalman filter.Then,a time series of the error is obtained through a subsequent Monte Carlo simulation based on the derived error propagation model.The proposed analysis method is then validated through data simulation and field tests.The results indicate that a 1 mm accuracy in measuring the track irregularity is achievable for the GNSS/INS integrated system.Meanwhile,the influences of the dominant inertial sensor errors on the final measurement accuracy are analyzed quantitatively and discussed comprehensively.
文摘For any Pisot number β it is known that the set F(β) ={t : limn→∞‖tβn‖ = 0} is countable, where ‖α‖ is the distance between a real number a and the set of integers. In this paper it is proved that every member in this set is of the form cβn, where n is a nonnegative integer and e is determined by a linear system of equations. Furthermore, for some self-similar measures μ associated with β, the limit at infinity of the Fourier transforms limn→μ(tβn)≠0 if and only if t is in a certain subset of F(β). This generalizes a similar result of Huang and Strichartz.