One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques t...One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.展开更多
This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplif...This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplification of the first part, and experiments show that these simplifications work. On the contrary to the second part, the third part is the enhancement of the first part and it can be used when the first part cannot work very well in the fuzzy inference algorithm, which would be introduced in the fourth part. Finally, the fourth part "neural fuzzy inference algorithm" is been introduced. It can inference the new membership function of the output based on previous fuzzy rules. The accuracy of the fuzzy inference algorithm is dependent on neural network generalization ability. Even if the generalization ability of the neural network we used is good, we still get inaccurate results since the new coming rule may not be related to any of the previous rules. Experiments show this algorithm is successful in situations which satisfy these conditions.展开更多
in reliability design of fatigue under random loading, the influence of loading se-quence must be considered. In order to avoid the uneertain hypothesis in the Miner's rule, ie. thatthe sum of damage equals one re...in reliability design of fatigue under random loading, the influence of loading se-quence must be considered. In order to avoid the uneertain hypothesis in the Miner's rule, ie. thatthe sum of damage equals one represents failure, this paper proposes the probabilistic relativeMine's rule. This paper also presents a new method for calculating reliability, ie. the syntheticmethod of Miner's rule and interference model. This model considers not only the influence ofstress concentration, dimension and surface, but also the influence of stress amplitude and se-quence.展开更多
基金support from Taif University Researchers supporting Project Number(TURSP-2020/215),Taif University,Taif,Saudi Arabia.
文摘One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.
文摘This paper proposes a new neural fuzzy inference system that mainly consists of four parts. The first part is about how to use neural network to express the relation within a fuzzy rule. The second part is the simplification of the first part, and experiments show that these simplifications work. On the contrary to the second part, the third part is the enhancement of the first part and it can be used when the first part cannot work very well in the fuzzy inference algorithm, which would be introduced in the fourth part. Finally, the fourth part "neural fuzzy inference algorithm" is been introduced. It can inference the new membership function of the output based on previous fuzzy rules. The accuracy of the fuzzy inference algorithm is dependent on neural network generalization ability. Even if the generalization ability of the neural network we used is good, we still get inaccurate results since the new coming rule may not be related to any of the previous rules. Experiments show this algorithm is successful in situations which satisfy these conditions.
文摘in reliability design of fatigue under random loading, the influence of loading se-quence must be considered. In order to avoid the uneertain hypothesis in the Miner's rule, ie. thatthe sum of damage equals one represents failure, this paper proposes the probabilistic relativeMine's rule. This paper also presents a new method for calculating reliability, ie. the syntheticmethod of Miner's rule and interference model. This model considers not only the influence ofstress concentration, dimension and surface, but also the influence of stress amplitude and se-quence.