Assessment of ecological flow or water level for water bodies is important for the protection of de- graded or degrading ecosystems caused by water shortage in arid regions, and it has become a key issue in water reso...Assessment of ecological flow or water level for water bodies is important for the protection of de- graded or degrading ecosystems caused by water shortage in arid regions, and it has become a key issue in water resources planning. In the past several decades, many methods have been proposed to assess ecological flow for rivers and ecological water level for lakes or wetlands. To balance water uses by human and ecosystems, we proposed a general multi-objective programming model to determine minimum ecological flow or water level for inland water bodies, where two objectives are water index for human and habitat index for ecosystems, respectively Using the weighted sum method for multi-objective optimization, minimum ecological flow or water level can be determined from the breakpoint in the water index-habitat index curve, which is similar to the slope method to de- termine minimum ecological flow from wetted perimeter-discharge curve. However, the general multi-objective programming model is superior to the slope method in its physical meaning and calculation method. This model provides a general analysis method for ecological water uses of different inland water bodies, and can be used to define minimum ecological flow or water level by choosing appropriate water and habitat indices. Several com- monly used flow or water level assessment methods were found to be special cases of the general model, including the wetted perimeter method and the multi-objective physical habitat simulation method for ecological river flow, the inundated forest width method for regeneration flow of floodplain forest and the lake surface area method for eco- logical lake level. These methods were applied to determine minimum ecological flow or water level for two repre- sentative rivers and a lake in northern Xinjiang of China, including minimum ecological flow for the Ertix River, minimum regeneration flow for floodplain forest along the midstream of Kaxgar River, and minimum ecological lake level for the Ebinur Lake. The results illustrated the versatility of the general model, and can provide references for water resources planning and ecosystem protection for these rivers and lake.展开更多
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p...An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.展开更多
Water content (WC) and sap flow from leaf sheath of rice plants with varying nitrogen levels at different growth stages, and fluctuations in relative water content (RWC) of rice plants being damaged by brown planthopp...Water content (WC) and sap flow from leaf sheath of rice plants with varying nitrogen levels at different growth stages, and fluctuations in relative water content (RWC) of rice plants being damaged by brown planthoppcr (BPH), Nilaparvata lugens were determined in the laboratory, and the tolerance of rice plants to BPH at different nitrogen regimes was evaluated in the greenhouse at International Rice Research Institute (IRRI), the Philippines. The results indicated that both WC and RWC were increased significantly, as the amount of sap flow from rice plants was reduced statistically, with the increase of nitrogen content in rice plants. RWC in rice plants applied with high nitrogen fertilizer decreased drastically by the injury of BPH nymphs, while the reduced survival duration of rice plants with the increase of nitrogen content was recorded. These may be considered to be one of the important factors in increasing the susceptibility to BPH damage on rice plants applied with nitrogen fertilizer.展开更多
Unsteady fluid flows and level fluctuations in a thin slab continuous casting mould have significant influence on product quality. In this study, the phenomena concerning transient flow features and free surface motio...Unsteady fluid flows and level fluctuations in a thin slab continuous casting mould have significant influence on product quality. In this study, the phenomena concerning transient flow features and free surface motions were analyzed by means of the large eddy simulation (LES) software with the smagorinsky SGS model--VisualCast (VCast) II, where the Simpler algorithm on a body-fitted mesh was used to resolve governing equations. A series of water analog experiments on the fluid flow and the surface wave in the moulds of thin slab continuous casting were also performed. The results of fluid regions, middle of vortex and level fluctuation from digital simulations were identical with the results of the water analog experiments.展开更多
We study the feature of media changes beneath the Zipingpu reservoir and discuss the process of permeation with the water level rise and fall of the reservoir from January 2005 to January 2008 from ambient noise cross...We study the feature of media changes beneath the Zipingpu reservoir and discuss the process of permeation with the water level rise and fall of the reservoir from January 2005 to January 2008 from ambient noise cross correlation by using continuous seismic data recorded by the stations of Zipingpu seismic network and YZP station. A moving-window cross-spectrum technique has been used to calculate the relative seismic velocity changes between station pairs. Results revealed an obvious relationship between relative seismic velocity, and the water level changes with a time delay that may be caused by permeation during three main impoundments and two large scale disemboguements. Impoundment generates a fast and large impact on the superficial layer, and the changes of seismic velocity is the result of increased pressure and permeation during the impoundment. At the first impoundment, the main effect factor is pressure. During the next two process of impoundment, permeation becomes the main effect factor, affecting the fault at a depth of about 8kin.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao Ri...[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao River) in coastal wetland of Yellow River estuary as study objects, water samples were collected from the four rivers in May (dry period), August (wet period) and November (normal period) in 2009 and 2010 respectively, then pollution indices like nutritive salts, COD, chlorophyll-a, petroleum, etc. were measured. Afterwards, the status quo of water pollution was assessed based on Nemero index and comprehensive trophic level index (TLI), so as to find out the integral status quo of water quality of wetland rivers and damages to aquatic ecological environment. [Result] On the whole, water pollution of four rivers in coastal wetland of Yellow River estuary was serious, in the eutrophication state, and the main pollutants were TN, TP, NH+4-N and petroleum. In addition, excessive N and P in the four rivers resulted in water eutrophication of Bohai Bay, so further leading to ride tide, which destroyed the coastal ecological environment of Bohai Sea. Moreover, compared with historical data, water pollution by nitrogen and phosphorus became more serious, while there was no obvious aggravation in the water pollution by petroleum. In a word, water pollution wasn’t optimistic on the whole. [Conclusion] The research could provide theoretical bases for the protection and utilization of river water in coastal wetland of Yellow River estuary and its coastal sea area.展开更多
A model has been constructed to study water flow in a single clay crack, and a new concept of the critical rise rate of water level in the crack has been put forward. When the water level rises faster than this critic...A model has been constructed to study water flow in a single clay crack, and a new concept of the critical rise rate of water level in the crack has been put forward. When the water level rises faster than this critical rate, the flow in a crack will increase, and vice versa. The flow in a crack is not in proportion to the water level. The maximium water flow in clay is 30-40 times smaller than that in a rock fissure under the same condition. In the process of water discharge, the flow in a crack will lessen gradually, and the crack will grow narrower by 3.0-4.0cm, with its depth reducing by over 50%.展开更多
基金supported by the Open Research Fund Program of State key Laboratory of Hydroscience and Engineering, Tsinghua University (sklhse-2013-A-03)the National Natural Science Foundation of China (50879041)
文摘Assessment of ecological flow or water level for water bodies is important for the protection of de- graded or degrading ecosystems caused by water shortage in arid regions, and it has become a key issue in water resources planning. In the past several decades, many methods have been proposed to assess ecological flow for rivers and ecological water level for lakes or wetlands. To balance water uses by human and ecosystems, we proposed a general multi-objective programming model to determine minimum ecological flow or water level for inland water bodies, where two objectives are water index for human and habitat index for ecosystems, respectively Using the weighted sum method for multi-objective optimization, minimum ecological flow or water level can be determined from the breakpoint in the water index-habitat index curve, which is similar to the slope method to de- termine minimum ecological flow from wetted perimeter-discharge curve. However, the general multi-objective programming model is superior to the slope method in its physical meaning and calculation method. This model provides a general analysis method for ecological water uses of different inland water bodies, and can be used to define minimum ecological flow or water level by choosing appropriate water and habitat indices. Several com- monly used flow or water level assessment methods were found to be special cases of the general model, including the wetted perimeter method and the multi-objective physical habitat simulation method for ecological river flow, the inundated forest width method for regeneration flow of floodplain forest and the lake surface area method for eco- logical lake level. These methods were applied to determine minimum ecological flow or water level for two repre- sentative rivers and a lake in northern Xinjiang of China, including minimum ecological flow for the Ertix River, minimum regeneration flow for floodplain forest along the midstream of Kaxgar River, and minimum ecological lake level for the Ebinur Lake. The results illustrated the versatility of the general model, and can provide references for water resources planning and ecosystem protection for these rivers and lake.
基金Project(8151027501000008) supported by Guangdong Natural Science Foundation, ChinaProject(2007490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, ChinaProject (2006K0006) supported by the Open Foundation of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
文摘An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.
文摘Water content (WC) and sap flow from leaf sheath of rice plants with varying nitrogen levels at different growth stages, and fluctuations in relative water content (RWC) of rice plants being damaged by brown planthoppcr (BPH), Nilaparvata lugens were determined in the laboratory, and the tolerance of rice plants to BPH at different nitrogen regimes was evaluated in the greenhouse at International Rice Research Institute (IRRI), the Philippines. The results indicated that both WC and RWC were increased significantly, as the amount of sap flow from rice plants was reduced statistically, with the increase of nitrogen content in rice plants. RWC in rice plants applied with high nitrogen fertilizer decreased drastically by the injury of BPH nymphs, while the reduced survival duration of rice plants with the increase of nitrogen content was recorded. These may be considered to be one of the important factors in increasing the susceptibility to BPH damage on rice plants applied with nitrogen fertilizer.
文摘Unsteady fluid flows and level fluctuations in a thin slab continuous casting mould have significant influence on product quality. In this study, the phenomena concerning transient flow features and free surface motions were analyzed by means of the large eddy simulation (LES) software with the smagorinsky SGS model--VisualCast (VCast) II, where the Simpler algorithm on a body-fitted mesh was used to resolve governing equations. A series of water analog experiments on the fluid flow and the surface wave in the moulds of thin slab continuous casting were also performed. The results of fluid regions, middle of vortex and level fluctuation from digital simulations were identical with the results of the water analog experiments.
基金sponsored by the National Natural Science Foundation of China (2012BAK1902)
文摘We study the feature of media changes beneath the Zipingpu reservoir and discuss the process of permeation with the water level rise and fall of the reservoir from January 2005 to January 2008 from ambient noise cross correlation by using continuous seismic data recorded by the stations of Zipingpu seismic network and YZP station. A moving-window cross-spectrum technique has been used to calculate the relative seismic velocity changes between station pairs. Results revealed an obvious relationship between relative seismic velocity, and the water level changes with a time delay that may be caused by permeation during three main impoundments and two large scale disemboguements. Impoundment generates a fast and large impact on the superficial layer, and the changes of seismic velocity is the result of increased pressure and permeation during the impoundment. At the first impoundment, the main effect factor is pressure. During the next two process of impoundment, permeation becomes the main effect factor, affecting the fault at a depth of about 8kin.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
基金Supported by Scientific Research Project of National Ocean Public Welfare (200805070,200905009-5,200905020)
文摘[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao River) in coastal wetland of Yellow River estuary as study objects, water samples were collected from the four rivers in May (dry period), August (wet period) and November (normal period) in 2009 and 2010 respectively, then pollution indices like nutritive salts, COD, chlorophyll-a, petroleum, etc. were measured. Afterwards, the status quo of water pollution was assessed based on Nemero index and comprehensive trophic level index (TLI), so as to find out the integral status quo of water quality of wetland rivers and damages to aquatic ecological environment. [Result] On the whole, water pollution of four rivers in coastal wetland of Yellow River estuary was serious, in the eutrophication state, and the main pollutants were TN, TP, NH+4-N and petroleum. In addition, excessive N and P in the four rivers resulted in water eutrophication of Bohai Bay, so further leading to ride tide, which destroyed the coastal ecological environment of Bohai Sea. Moreover, compared with historical data, water pollution by nitrogen and phosphorus became more serious, while there was no obvious aggravation in the water pollution by petroleum. In a word, water pollution wasn’t optimistic on the whole. [Conclusion] The research could provide theoretical bases for the protection and utilization of river water in coastal wetland of Yellow River estuary and its coastal sea area.
文摘A model has been constructed to study water flow in a single clay crack, and a new concept of the critical rise rate of water level in the crack has been put forward. When the water level rises faster than this critical rate, the flow in a crack will increase, and vice versa. The flow in a crack is not in proportion to the water level. The maximium water flow in clay is 30-40 times smaller than that in a rock fissure under the same condition. In the process of water discharge, the flow in a crack will lessen gradually, and the crack will grow narrower by 3.0-4.0cm, with its depth reducing by over 50%.