We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state repres...We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state representations. We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations. It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space.展开更多
Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton m...Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.展开更多
Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model ...Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (Ae). This leads to a simple expression of the entrainment rate, in which Ae needs to be parameterized. According to the results in Liu et al. (2016), Ae can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect, the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect. These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL. This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models, this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.展开更多
To identify target energy balance-related behaviors(ERBs),baseline data from 141overweight or obese schoolchildren(aged 8-14years old)was used to predict adiposity[body mass index(BMI)and fat percentage]one year...To identify target energy balance-related behaviors(ERBs),baseline data from 141overweight or obese schoolchildren(aged 8-14years old)was used to predict adiposity[body mass index(BMI)and fat percentage]one year later.The ERBs included a modified Dietary Approach to Stop Hypertension diet score(DASH score),leisure-time physical activity(PA,days/week),and leisure screen time(minutes/day).Several cardiometabolic variables were measured in the fasting state, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood glucose (GLU), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C).展开更多
In this paper,we set out to study the ensemble forecast for tropical cyclones.The case study is based on the Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)method and the WRF model to improve t...In this paper,we set out to study the ensemble forecast for tropical cyclones.The case study is based on the Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)method and the WRF model to improve the prediction accuracy for track and intensity,and two different typhoons are selected as cases for analysis.We first select perturbed parameters in the YSU and WSM6 schemes,and then solve CNOP-Ps with simulated annealing algorithm for single parameters as well as the combination of multiple parameters.Finally,perturbations are imposed on default parameter values to generate the ensemble members.The whole proposed procedures are referred to as the PerturbedParameter Ensemble(PPE).We also conduct two experiments,which are control forecast and ensemble forecast,termed Ctrl and perturbed-physics ensemble(PPhyE)respectively,to demonstrate the performance for contrast.In the article,we compare the effects of three experiments on tropical cyclones in aspects of track and intensity,respectively.For track,the prediction errors of PPE are smaller.The ensemble mean of PPE filters the unpredictable situation and retains the reasonably predictable components of the ensemble members.As for intensity,ensemble mean values of the central minimum sea-level pressure and the central maximum wind speed are closer to CMA data during most of the simulation time.The predicted values of the PPE ensemble members included the intensity of CMA data when the typhoon made landfall.The PPE also shows uncertainty in the forecast.Moreover,we also analyze the track and intensity from physical variable fields of PPE.Experiment results show PPE outperforms the other two benchmarks in track and intensity prediction.展开更多
The cotton bollworm, Heliothis armigera (Hubner) is an important insect species at-tacking many crops. Their performances have been examined at temperatures from 15℃ to 35℃ and relative humidities (RH) between 22.5%...The cotton bollworm, Heliothis armigera (Hubner) is an important insect species at-tacking many crops. Their performances have been examined at temperatures from 15℃ to 35℃ and relative humidities (RH) between 22.5% and 100%, respectively, in order to assess possible effect of climate in future on its occurrence and infestation. Durations of all developmental stages of the insect shortened with increasing temperature. The temperature favoring population growth ranged from 25℃ to 30℃.Larval duration and adult longevity decreased as relative humidity increased, but development of other stages was independent of RH. At RH of over 64%, their survival rate, egg production and oviposition rate varied a little, and all the population parameters of the insect remained at a relative constant level.展开更多
An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken i...An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405060 and 11571119
文摘We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state representations. We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations. It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space.
基金Supported by the Qingdao National Laboratory for Marine Science and Technology(No.2016OPR0107)the National Natural Science Foundation of China(No.41806013)。
文摘Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.
基金sponsored by the National Natural Science Foundation of China(Grant No.40975004)the State Key Basic Program(973)(Grant No.2013CB430100)
文摘Following the parameterization of sheared entrainment obtained in the companion paper, Liu et al. (2016), the present study aims to further investigate the characteristics of entrainment, and develop a simple model for predicting the growth rate of a well-developed and sheared CBL. The relative stratification, defined as the ratio of the stratification in the free atmosphere to that in the entrainment zone, is found to be a function of entrainment flux ratio (Ae). This leads to a simple expression of the entrainment rate, in which Ae needs to be parameterized. According to the results in Liu et al. (2016), Ae can be simply expressed as the ratio of the convective velocity scale in the sheared CBL to that in the shear-free CBL. The parameterization of the convective velocity scale in the sheared CBL is obtained by analytically solving the bulk model with several assumptions and approximations. Results indicate that the entrainment process is influenced by the dynamic effect, the interaction between mean shear and environmental stratification, and one other term that includes the Coriolis effect. These three parameterizations constitute a simple model for predicting the growth rate of a well-developed and sheared CBL. This model is validated by outputs of LESs, and the results show that it performs satisfactorily. Compared with bulk models, this model does not need to solve a set of equations for the CBL. It is more convenient to apply in numerical models.
基金Research special fund of the Ministry of Health public service sectors funded projects(201202010)The 12th Five-year Key Project of Beijing Education Sciences Research Institute(AAA12011)
文摘To identify target energy balance-related behaviors(ERBs),baseline data from 141overweight or obese schoolchildren(aged 8-14years old)was used to predict adiposity[body mass index(BMI)and fat percentage]one year later.The ERBs included a modified Dietary Approach to Stop Hypertension diet score(DASH score),leisure-time physical activity(PA,days/week),and leisure screen time(minutes/day).Several cardiometabolic variables were measured in the fasting state, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood glucose (GLU), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C).
基金National Key Research and Development Program of China(2020YFA0608002)Key Project Fund of Shanghai 2020“Science and Technology Innovation Action Plan”for Social Development(20dz1200702)+2 种基金National Natural Science Foundation of China(42075141)Meteorological Joint Funds of the National Natural Science Foundation of China(U2142211)Fundamental Research Funds for the Central Universities(13502150039/003)。
文摘In this paper,we set out to study the ensemble forecast for tropical cyclones.The case study is based on the Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)method and the WRF model to improve the prediction accuracy for track and intensity,and two different typhoons are selected as cases for analysis.We first select perturbed parameters in the YSU and WSM6 schemes,and then solve CNOP-Ps with simulated annealing algorithm for single parameters as well as the combination of multiple parameters.Finally,perturbations are imposed on default parameter values to generate the ensemble members.The whole proposed procedures are referred to as the PerturbedParameter Ensemble(PPE).We also conduct two experiments,which are control forecast and ensemble forecast,termed Ctrl and perturbed-physics ensemble(PPhyE)respectively,to demonstrate the performance for contrast.In the article,we compare the effects of three experiments on tropical cyclones in aspects of track and intensity,respectively.For track,the prediction errors of PPE are smaller.The ensemble mean of PPE filters the unpredictable situation and retains the reasonably predictable components of the ensemble members.As for intensity,ensemble mean values of the central minimum sea-level pressure and the central maximum wind speed are closer to CMA data during most of the simulation time.The predicted values of the PPE ensemble members included the intensity of CMA data when the typhoon made landfall.The PPE also shows uncertainty in the forecast.Moreover,we also analyze the track and intensity from physical variable fields of PPE.Experiment results show PPE outperforms the other two benchmarks in track and intensity prediction.
文摘The cotton bollworm, Heliothis armigera (Hubner) is an important insect species at-tacking many crops. Their performances have been examined at temperatures from 15℃ to 35℃ and relative humidities (RH) between 22.5% and 100%, respectively, in order to assess possible effect of climate in future on its occurrence and infestation. Durations of all developmental stages of the insect shortened with increasing temperature. The temperature favoring population growth ranged from 25℃ to 30℃.Larval duration and adult longevity decreased as relative humidity increased, but development of other stages was independent of RH. At RH of over 64%, their survival rate, egg production and oviposition rate varied a little, and all the population parameters of the insect remained at a relative constant level.
基金supported by the Program for Excellent Young Teachers Foundation of Shanghai in China(Grant No.thc-20100036)
文摘An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle.