Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was ad...Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was adjusted to around room temperature. The magnetic phase transition was driven from first-order to second-order due to Co substitution. As a second-order phase transition material, the MCE of La0.6Pr0.4(Fe0.825Co0.07Si0.105)13, whose relative cooling power was 175 J/kg under a field change of 2 T, ...展开更多
We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with pa...We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with particle diameters ranging from 50 to 200 nm.In the(La1-xHox)2/3Ca1/3MnO3 compound,an external magnetic field induced a magnetic transition from an paramagnetic phase to a ferromagnetic phase above Ts=105-135 K,leading to magnetocaloric effects.The maximum value of ΔSM was 1.19 J/(kg·K) at 100 K and 2.03 J/(kg·K) at 152 K for a magnetic field change of 5 T.Because both samples had large relative cooling power(RCP) and wide δTFWHM,the study on systems with the(La1-xHox)2/3Ca1/3MnO3-related magnetic transitions may open an important field in searching good magnetic materials.展开更多
基金Project supported by the National Basic Research Program of China (2006CB601101)the National High Technology Research and Development Program of China (2007AA03Z440)the National Natural Science Foundation of China (50731007)
文摘Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was adjusted to around room temperature. The magnetic phase transition was driven from first-order to second-order due to Co substitution. As a second-order phase transition material, the MCE of La0.6Pr0.4(Fe0.825Co0.07Si0.105)13, whose relative cooling power was 175 J/kg under a field change of 2 T, ...
基金Project supported by the National Natural Science Foundation of China (50572013)
文摘We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with particle diameters ranging from 50 to 200 nm.In the(La1-xHox)2/3Ca1/3MnO3 compound,an external magnetic field induced a magnetic transition from an paramagnetic phase to a ferromagnetic phase above Ts=105-135 K,leading to magnetocaloric effects.The maximum value of ΔSM was 1.19 J/(kg·K) at 100 K and 2.03 J/(kg·K) at 152 K for a magnetic field change of 5 T.Because both samples had large relative cooling power(RCP) and wide δTFWHM,the study on systems with the(La1-xHox)2/3Ca1/3MnO3-related magnetic transitions may open an important field in searching good magnetic materials.