期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank 被引量:4
1
作者 包雨云 王冰洁 +2 位作者 林明丽 高正明 杨杰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第6期890-896,共7页
The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30... The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from0.30 T to 0.40T(T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand(RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VSof 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the system with D/T = 0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model(PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data. 展开更多
关键词 Gas holdup MIXING Multiphase reactors relative power demand CFD Multi-impeller stirred tank
下载PDF
Experimental study on gas–liquid dispersion and mass transfer in shear-thinning system with coaxial mixer 被引量:1
2
作者 Baoqing Liu Yijun Zheng +3 位作者 Ruijia Cheng Zilong Xu Manman Wang Zhijiang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1785-1791,共7页
The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas hold... The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas holdup, relative power demand, and volumetric mass transfer coefficient under different conditions were compared. The results show that, the increasing stirring power or gas flow rate is beneficial in promoting the overall gas holdup and volumetric mass transfer coefficient, while the increasing system viscosity weakens the mass transfer in a shearing–thinning system. Among the three turbines, the six curved-blade disc turbine(BDT-6) exhibits the best gas pumping capacity; the six 45° pitched-blade disc turbine(PBDT-6) has the highest volumetric mass transfer coefficient at the same unit volume power. 展开更多
关键词 Non-Newtonian fluids Coaxial mixer Gas holdup relative power demand Mass transfer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部