A fingerprint matching method based on local relative orientation field is proposed. It extracts local relative orientation field around each minutia for minutiae matching. Local orientation features are also used to ...A fingerprint matching method based on local relative orientation field is proposed. It extracts local relative orientation field around each minutia for minutiae matching. Local orientation features are also used to sorting minutiae in order to speed up searching a minutia when pairing minutiae. The experimental result reveals that this method achieves improved recognition accuracy. Key words fingerprint matching - ridge-based minutiae matching - local relative orientation field - sorting minutiae CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: ZHU En (1976-), male, Ph. D candidate, research direction: pattern recognition, image processing and information security.展开更多
The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochast...The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations.展开更多
Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultravio...Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultraviolet/infrared(UV/IR)mixed frequency ultrafast spectroscopy is applied to investigate the relative molecular orientations in two organic thin films of 7-(diethylamino)coumarin-3-carboxylic acid(DEAC)and perylene.The signal anisotropy changes caused by intermolecular energy/electron transfers are utilized to calculate the cross angles between the electronic transition dipole moment of the donor and the vibrational transition dipole moments of the acceptor,yielding the relative orientation between two adjacent molecules.Using this method,the relative orientation angle in DEAC film is determined to be 53.4°,close to 60°of its single crystalline structure,and that of the perylene film is determined to be 6.2°,also close to-0.2°of its single crystalline structure.Besides experimental uncertainties,the small difference between the angles determined by this method and those of single crystals also results from the fact that the thin film samples are polycrystalline where some of the molecules are amorphous.展开更多
BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients a...BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes...Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.展开更多
The study site is a holistic patient-centered organization that has developed a 16-week long orientation program for new graduate nurses entering the hospital setting. The purpose of the program is for new graduate nu...The study site is a holistic patient-centered organization that has developed a 16-week long orientation program for new graduate nurses entering the hospital setting. The purpose of the program is for new graduate nurses to gain the confidence, competence, and critical thinking skills for providing safe patient care. The issue occurring within the organization is that there is an increasing rise in the number of turnover rates of new graduates leaving the hospital, thus making evaluating the program a necessity to problem-solving. There has been no evaluation of the program in the past five years to reveal why the increase in the recent turnover rates. The data collected during the interview process was coded and categorized into three main sections: organizational, substantive, and theoretical. The evaluator used an organizational category to investigate for board areas or issues within the problem attempting to be solved. The evaluator concluded from the results and findings that the issue, a poor preceptor-preceptee relationship was seen by all stakeholders involved. The literature presented concludes that continuous evaluation of orientation programs is crucial for the professional and personal growth of new graduate nurses in the hospital.展开更多
Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed highe...Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.展开更多
This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance compariso...This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance comparison to a predefined reference point. We find the optimal investment strategy by maximizing a weighted average utility of a concave utility and an Sshaped utility via a concavification technique and the martingale method. Numerical results are carried out to show the impact of the extent to which the manager pays attention to the change of relative performance related to the reference point on the optimal terminal relative performance.展开更多
Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re...Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.展开更多
Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with ...Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.展开更多
Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in t...Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes.展开更多
Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for ang...Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for angles-only observability was found by using cylindrical dynamics, however, the solution of orbit determination is still not provided. This study develops a relative orbit determination algorithm with the cylindrical dynamics based on differential evolution. Firstly, the relative motion dynamics and line-of-sight measurement model for nearcircular orbit are established in cylindrical coordinate system.Secondly, the observability is qualitatively analyzed by using the dynamics and measurement model where the unobservable geometry is found. Then, the angles-only relative orbit determination problem is modeled into an optimal searching frame and an improved differential evolution algorithm is introduced to solve the problem. Finally, the proposed algorithm is verified and tested by a set of numerical simulations in the context of highEarth and low-Earth cases. The results show that initial relative orbit determination(IROD) solution with an appropriate accuracy in a relative short span is achieved, which can be used to initialize the navigation filter.展开更多
AIM:To compare relative peripheral refraction(RPR)in Chinese school children with different refractive errors using multispectral refraction topography(MRT).METHODS:A total of 713 eyes of primary school children[172 e...AIM:To compare relative peripheral refraction(RPR)in Chinese school children with different refractive errors using multispectral refraction topography(MRT).METHODS:A total of 713 eyes of primary school children[172 emmetropia(E),429 low myopia(LM),80 moderate myopia(MM),and 32 low hypermetropia(LH)]aged 10 to 13y were analyzed.RPRs were measured using MRT without mydriasis.MRT results showed RPR at 0-15°(RPR 0-15),15°-30°(RPR 15-30),and 30°-45°(RPR 30-45)annular in the inferior(RPR-I),superior(RPR-S),nasal(RPR-N),and temporal(RPR-T)quadrants.Spherical equivalent(SE)was detected and calculated using an autorefractor.RESULTS:There were significant differences of RPR 15-30 between groups MM[0.02(-0.12;0.18)]and LH[-0.13(-0.36;0.12)](P<0.05),MM and E[-0.06(-0.20;0.10)](P<0.05),and LM[-0.02(-0.15;0.15)]and E(P<0.05).There were also significant differences of RPR 30-45 between groups MM[0.45(0.18;0.74)]and E[0.29(-0.09;0.67)](P<0.05),and LM[0.44(0.14;0.76)]and E(P<0.001).RPR values increased from the hyperopic to medium myopic group in each annular.There were significant differences of RPR-S between groups MM[-0.02(-0.60;0.30)]and E[-0.44(-0.89;-0.04)](P<0.001),and LM[-0.28(-0.71;0.12)]and E(P<0.05).There were also significant differences of RPR-T between groups MM[0.37(0.21;0.78)]and LH[0.14(-0.52;0.50)](P<0.05),LM[0.41(0.06;0.84)]and LH(P<0.05),and LM and E[0.29(-0.10;0.68),P<0.05].A Spearman’s correlation analysis showed a negative correlation between RPR and SE in the 15°-30°(P=0.005),30°-45°(P<0.05)annular(P=0.002),superior(P<0.001),and temporal(P=0.001)quadrants.CONCLUSION:Without pupil dilation,values for RPR 15-30,30-45,RPR-S,and T shows significant differences between myopic eyes and emmetropia,and the differences are negatively correlated with SE.展开更多
AIM:To compare relative peripheral refractive errors(RPREs)in Chinese children with and without myopic anisometropia(MAI)and to explore the relationship between RPRE and myopia.METHODS:This observational cross-section...AIM:To compare relative peripheral refractive errors(RPREs)in Chinese children with and without myopic anisometropia(MAI)and to explore the relationship between RPRE and myopia.METHODS:This observational cross-sectional study included 160 children divided into two groups according to the interocular spherical equivalent refraction(SER)difference≥1.0 D in the MAI group(n=80)and<1.0 D in the non-MAI group(n=80).The MAI group was further divided into two subgroups:ΔSER<2.0 D group and ΔSER≥2.0 D group.Basic ocular biometric parameters of axial length(AL),average keratometry(Ave K),cylinder(CYL),surface regularity index(SRI),and surface asymmetry index(SAI)were recorded.In addition,multispectral refraction topography was performed to measure RPRE,and the parameters were recorded as total refraction difference value(TRDV),refraction difference value(RDV)0-10,RDV10-20,RDV20-30,RDV30-40,RDV40-53,RDV-superior(RDV-S),RDV-inferior(RDV-I),RDV-temporal(RDV-T)and RDV-nasal(RDV-N).RESULTS:In the non-MAI group,the interocular differences of all parameters of RPRE were not significant.In the MAI group,the interocular differences of TRDV,RDV10-53,RDV-S,RDV-I,RDV-T,and RDV-N were significant.In subgroup analysis,the interocular differences of TRDV,RDV30-53,RDV-I,and RDV-T were significant in ΔSER<2.0 D group and ΔSER≥2.0 D group,but the interocular differences of RDV10-30,RDV-S and RDV-N were only significant in the ΔSER≥2.0 D group.In correlation analysis,ΔTRDV,ΔRDV 10-53,ΔRDV-S,and ΔRDV-N were negatively correlated with ΔSER but positively correlated with ΔAL.CONCLUSION:The more myopic eyes have larger hyperopic RPRE in Chinese children with MAI in certain retinal range,and partialΔRPRE is closely associated with ΔSER and ΔAL.展开更多
The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines ...The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.展开更多
The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission elect...The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission electron microscopy(TEM).The maximum differences in yield strength and ductility of the single crystals at room temperature are 41.6%and 14.7%,respectively.This indicates that the mechanical properties are strongly influenced by the crystal orientation.Moreover,grains with varying orientations exhibit distinct slip characteristics,including slip homogenization,slip localization,and multiple slip.In single crystal SC1,slip localization primarily contributes to its inferior ductility compared to other grains.Nevertheless,during deformation at 250℃,the distinct morphology and distribution of precipitates in the crystals are also correlated with orientation,which causes the increase in the maximum elongation difference to 20.8%in all selected single crystals.Notably,SC1,with a precipitate volume fraction of 2.65%,exhibits more severe slip localization compared to room temperature conditions,while SC2,with a precipitate volume fraction of 4.79%,demonstrates cross-slip characteristics,significantly enhancing the plastic deformation capacity of the Al−Cu−Li alloy.展开更多
The low porosity and low permeability of tight oil reservoirs call for improvements in the current technologies for oil recovery.Traditional chemical solutions with large molecular size cannot effectively flow through...The low porosity and low permeability of tight oil reservoirs call for improvements in the current technologies for oil recovery.Traditional chemical solutions with large molecular size cannot effectively flow through the nanopores of the reservoir.In this study,the feasibility of Nanofluids has been investigated using a high pressure high temperature core-holder and nuclear magnetic resonance(NMR).The results of the experiments indicate that the specified Nanofluids can enhance the tight oil recovery significantly.The water and oil relative permeability curve shifts to the high water saturation side after Nanofluid flooding,thereby demonstrating an increase in the water wettability of the core.In the Nanofluid flooding process the oil recovery was enhanced by 15.1%,compared to waterflooding stage.The T2 spectra using the NMR show that after Nanofluid flooding,a 7.18%increment in oil recovery factor was gained in the small pores,a 4.9%increase in the middle pores,and a 0.29%increase in the large pores.These results confirm that the Nanofluids can improve the flow state in micro-sized pores inside the core and increase the ultimate oil recovery factor.展开更多
Experimentally, the best design gives estimates of the desired effects and contrasts with maximum precision. Efficiency as a discriminating factor enables comparison of designs. The goal of Response Surface Methodolog...Experimentally, the best design gives estimates of the desired effects and contrasts with maximum precision. Efficiency as a discriminating factor enables comparison of designs. The goal of Response Surface Methodology (RSM) is the determination of the best settings of the in-put variables for a maximum (or a minimum) response within a region of interest, R. This calls for fitting a model that adequately represents the mean response since such a model, is then used to locate the optimum. D-, A-, E- and T-Optimal designs of a rotatable design of degree two in four dimensions constructed using balanced incomplete block designs (BIBD) when the number of replications is less than three times the number of pairs of treatments occur together in the design and their relative efficiencies to general designs are presented. D-optimal design had 88 runs after replicating the factorial part twice and the axial part thrice with an optimal variance of 0.6965612 giving an efficiency of 97.7% while for A- and T-optimal designs they are formed with 112 runs each obtained by replicating the factorial part two times and axial part six times. Their optimal variances are 0.05798174 and 1.29828 respectively, with efficiency of 71.8% for A-optimal and 87.5% for T-optimal design. E-optimal design was found to be the most efficient design with an only 32 runs comprising only of the factorial part and with an optimal variance of 0.4182000, attaining an efficiency of approximately 1%. This study proposes the adoption of the E-optimal design in estimating the parameters of a rotatable second-order degree model constructed using BIBD for less costs and time saving.展开更多
文摘A fingerprint matching method based on local relative orientation field is proposed. It extracts local relative orientation field around each minutia for minutiae matching. Local orientation features are also used to sorting minutiae in order to speed up searching a minutia when pairing minutiae. The experimental result reveals that this method achieves improved recognition accuracy. Key words fingerprint matching - ridge-based minutiae matching - local relative orientation field - sorting minutiae CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373023)Biography: ZHU En (1976-), male, Ph. D candidate, research direction: pattern recognition, image processing and information security.
基金National Natural Science Foundation of China(Nos.4156108241161061)。
文摘The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations.
基金supported by Ministry of Science and Technology of China(No.2017YFA0204702)the National Natural Science Foundation of China(No.21627805,No.21673004,No.21804004,and No.21821004)。
文摘Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultraviolet/infrared(UV/IR)mixed frequency ultrafast spectroscopy is applied to investigate the relative molecular orientations in two organic thin films of 7-(diethylamino)coumarin-3-carboxylic acid(DEAC)and perylene.The signal anisotropy changes caused by intermolecular energy/electron transfers are utilized to calculate the cross angles between the electronic transition dipole moment of the donor and the vibrational transition dipole moments of the acceptor,yielding the relative orientation between two adjacent molecules.Using this method,the relative orientation angle in DEAC film is determined to be 53.4°,close to 60°of its single crystalline structure,and that of the perylene film is determined to be 6.2°,also close to-0.2°of its single crystalline structure.Besides experimental uncertainties,the small difference between the angles determined by this method and those of single crystals also results from the fact that the thin film samples are polycrystalline where some of the molecules are amorphous.
基金This study was reviewed and approved by the Maternal and child health hospital of Hubei Province(Approval No.20201025).
文摘BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金the National Natural Science Foundation of China(Nos.52175143 and 51571150)。
文摘Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.
文摘The study site is a holistic patient-centered organization that has developed a 16-week long orientation program for new graduate nurses entering the hospital setting. The purpose of the program is for new graduate nurses to gain the confidence, competence, and critical thinking skills for providing safe patient care. The issue occurring within the organization is that there is an increasing rise in the number of turnover rates of new graduates leaving the hospital, thus making evaluating the program a necessity to problem-solving. There has been no evaluation of the program in the past five years to reveal why the increase in the recent turnover rates. The data collected during the interview process was coded and categorized into three main sections: organizational, substantive, and theoretical. The evaluator used an organizational category to investigate for board areas or issues within the problem attempting to be solved. The evaluator concluded from the results and findings that the issue, a poor preceptor-preceptee relationship was seen by all stakeholders involved. The literature presented concludes that continuous evaluation of orientation programs is crucial for the professional and personal growth of new graduate nurses in the hospital.
基金funded by Jiangsu Shuang Chuang Tuan Dui program (JSSCTD202147)Jiangsu Shuang Chuang Ren Cai program (JSSCRC2021541)+1 种基金Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Initiation Funds of Yangzhou University for Distinguished Scientists
文摘Background Our previous studies demonstrated that divalent organic iron(Fe)proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation(Qf)values displayed higher Fe bioavailabilities for broilers.Sodium iron ethylenediaminetetraacetate(NaFeEDTA)is a trivalent organic Fe source with the strongest chelating ligand EDTA.However,the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested.Herein,the chemical characteristics of 12 NaFeEDTA products were determined.Of these,one feed grade NaFeEDTA(Qf=2.07×10^(8)),one food grade NaFeEDTA(Qf=3.31×10^(8)),and one Fe proteinate with an extremely strong chelation strength(Fe-Prot ES,Qf value=8,590)were selected.Their bioavailabilities relative to Fe sulfate(FeSO_(4)·7H_(2)O)for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance,hematological indices,Fe contents,activities and gene expressions of Fe-containing enzymes in various tissues of broilers.Results NaFeEDTA sources varied greatly in their chemical characteristics.Plasma Fe concentration(PI),transferrin saturation(TS),liver Fe content,succinate dehydrogenase(SDH)activities in liver,heart,and kidney,catalase(CAT)activity in liver,and SDH mRNA expressions in liver and kidney increased linearly(P<0.05)with increasing levels of Fe supplementation.However,differences among Fe sources were detected(P<0.05)only for PI,liver Fe content,CAT activity in liver,SDH activities in heart and kidney,and SDH mRNA expressions in liver and kidney.Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake,the average bioavailabilities of Fe-Prot ES,feed grade NaFeEDTA,and food grade NaFeEDTA relative to the inorganic FeSO_(4)·7H_(2)O(100%)for broilers were 139%,155%,and 166%,respectively.Conclusions The bioavailabilities of organic Fe sources relative to FeSO_(4)·7H_(2)O were closely related to their Qf values,and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
基金Supported by the National Natural Science Foundation of China(12071335)the Humanities and Social Science Research Projects in Ministry of Education(20YJAZH025).
文摘This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance comparison to a predefined reference point. We find the optimal investment strategy by maximizing a weighted average utility of a concave utility and an Sshaped utility via a concavification technique and the martingale method. Numerical results are carried out to show the impact of the extent to which the manager pays attention to the change of relative performance related to the reference point on the optimal terminal relative performance.
基金supported by the Performance Incentive and Guidance Project for Scientific Research Institutions,China(cstc2022jxjl80028)the General Project of Chongqing Natural Science Foundation,China(cstc2021jcyj-msxmX0747)+2 种基金the Youth Innovation Team Project of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC02)the Jiangjin Experimental Station of National Germplasm Resources Observation,China(NAES025GR05)the Chongqing Technical Innovation and Application Development Special Project,China(CSTB2022T1AD-KPX0008).
文摘Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.
基金supported by the National Natural Science Foundation of China(Grant No.31772258)the National Key Research and Development Program(Grant No.2019YFD1000102-11)。
文摘Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.
基金supported by National Natural Science Foundation of China (52070194,52073309)Natural Science Foundation of Hunan Province (2022JJ20069)。
文摘Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes.
基金supported by the National Natural Science Foundation of China (12272168)the Foundation of Science and Technology on Space Intelligent Control Laboratory (HTKJ2023KL502015)。
文摘Angles-only relative orbit determination for space non-cooperative targets based on passive sensor is subject to weakly observable problem of the relative state between two spacecraft. Previously, the evidence for angles-only observability was found by using cylindrical dynamics, however, the solution of orbit determination is still not provided. This study develops a relative orbit determination algorithm with the cylindrical dynamics based on differential evolution. Firstly, the relative motion dynamics and line-of-sight measurement model for nearcircular orbit are established in cylindrical coordinate system.Secondly, the observability is qualitatively analyzed by using the dynamics and measurement model where the unobservable geometry is found. Then, the angles-only relative orbit determination problem is modeled into an optimal searching frame and an improved differential evolution algorithm is introduced to solve the problem. Finally, the proposed algorithm is verified and tested by a set of numerical simulations in the context of highEarth and low-Earth cases. The results show that initial relative orbit determination(IROD) solution with an appropriate accuracy in a relative short span is achieved, which can be used to initialize the navigation filter.
基金Supported by the Shenzhen Science and Technology Program (No.JCYJ20210324142800001).
文摘AIM:To compare relative peripheral refraction(RPR)in Chinese school children with different refractive errors using multispectral refraction topography(MRT).METHODS:A total of 713 eyes of primary school children[172 emmetropia(E),429 low myopia(LM),80 moderate myopia(MM),and 32 low hypermetropia(LH)]aged 10 to 13y were analyzed.RPRs were measured using MRT without mydriasis.MRT results showed RPR at 0-15°(RPR 0-15),15°-30°(RPR 15-30),and 30°-45°(RPR 30-45)annular in the inferior(RPR-I),superior(RPR-S),nasal(RPR-N),and temporal(RPR-T)quadrants.Spherical equivalent(SE)was detected and calculated using an autorefractor.RESULTS:There were significant differences of RPR 15-30 between groups MM[0.02(-0.12;0.18)]and LH[-0.13(-0.36;0.12)](P<0.05),MM and E[-0.06(-0.20;0.10)](P<0.05),and LM[-0.02(-0.15;0.15)]and E(P<0.05).There were also significant differences of RPR 30-45 between groups MM[0.45(0.18;0.74)]and E[0.29(-0.09;0.67)](P<0.05),and LM[0.44(0.14;0.76)]and E(P<0.001).RPR values increased from the hyperopic to medium myopic group in each annular.There were significant differences of RPR-S between groups MM[-0.02(-0.60;0.30)]and E[-0.44(-0.89;-0.04)](P<0.001),and LM[-0.28(-0.71;0.12)]and E(P<0.05).There were also significant differences of RPR-T between groups MM[0.37(0.21;0.78)]and LH[0.14(-0.52;0.50)](P<0.05),LM[0.41(0.06;0.84)]and LH(P<0.05),and LM and E[0.29(-0.10;0.68),P<0.05].A Spearman’s correlation analysis showed a negative correlation between RPR and SE in the 15°-30°(P=0.005),30°-45°(P<0.05)annular(P=0.002),superior(P<0.001),and temporal(P=0.001)quadrants.CONCLUSION:Without pupil dilation,values for RPR 15-30,30-45,RPR-S,and T shows significant differences between myopic eyes and emmetropia,and the differences are negatively correlated with SE.
文摘AIM:To compare relative peripheral refractive errors(RPREs)in Chinese children with and without myopic anisometropia(MAI)and to explore the relationship between RPRE and myopia.METHODS:This observational cross-sectional study included 160 children divided into two groups according to the interocular spherical equivalent refraction(SER)difference≥1.0 D in the MAI group(n=80)and<1.0 D in the non-MAI group(n=80).The MAI group was further divided into two subgroups:ΔSER<2.0 D group and ΔSER≥2.0 D group.Basic ocular biometric parameters of axial length(AL),average keratometry(Ave K),cylinder(CYL),surface regularity index(SRI),and surface asymmetry index(SAI)were recorded.In addition,multispectral refraction topography was performed to measure RPRE,and the parameters were recorded as total refraction difference value(TRDV),refraction difference value(RDV)0-10,RDV10-20,RDV20-30,RDV30-40,RDV40-53,RDV-superior(RDV-S),RDV-inferior(RDV-I),RDV-temporal(RDV-T)and RDV-nasal(RDV-N).RESULTS:In the non-MAI group,the interocular differences of all parameters of RPRE were not significant.In the MAI group,the interocular differences of TRDV,RDV10-53,RDV-S,RDV-I,RDV-T,and RDV-N were significant.In subgroup analysis,the interocular differences of TRDV,RDV30-53,RDV-I,and RDV-T were significant in ΔSER<2.0 D group and ΔSER≥2.0 D group,but the interocular differences of RDV10-30,RDV-S and RDV-N were only significant in the ΔSER≥2.0 D group.In correlation analysis,ΔTRDV,ΔRDV 10-53,ΔRDV-S,and ΔRDV-N were negatively correlated with ΔSER but positively correlated with ΔAL.CONCLUSION:The more myopic eyes have larger hyperopic RPRE in Chinese children with MAI in certain retinal range,and partialΔRPRE is closely associated with ΔSER and ΔAL.
基金supported by the National Natural Science Foundation of China(Grant No.52375438)Shenzhen Science and Technology Programs(Grant No.JCYJ20220818100408019,JSGG20220831101401003,JSGG20210802154007021,KQTD201708101102503570).
文摘The practical application of lithium(Li)metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites.To address this challenge,this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper(Cu)current collectors.Specifically,this approach enhances the prevalence of Cu(100)facets within the grooves,effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition.Unlike approaches that modify the entire surface of collectors,our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics.The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42%over 350 cycles at 1 mA cm^(−2).The symmetric cell can cycle stably for 1600 h at 0.5 mA cm^(−2).Furthermore,when integrated with LiFePO4 cathodes,the full-cell configuration demonstrates outstanding capacity retention of 92.39%after 400 cycles at a 1C discharge rate.This study introduces a novel technique for fabricating selective lithiophilic three-dimensional(3D)Cu current collectors,thereby enhancing the performance of Li metal batteries.The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.
基金supported by the National Natural Science Foundation of China (No.U21B6004)Major Project of Scientific Innovation of Hunan Province,China (No.2021GK1040)National Key R&D Program of China (No.2020YFA0711104)。
文摘The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission electron microscopy(TEM).The maximum differences in yield strength and ductility of the single crystals at room temperature are 41.6%and 14.7%,respectively.This indicates that the mechanical properties are strongly influenced by the crystal orientation.Moreover,grains with varying orientations exhibit distinct slip characteristics,including slip homogenization,slip localization,and multiple slip.In single crystal SC1,slip localization primarily contributes to its inferior ductility compared to other grains.Nevertheless,during deformation at 250℃,the distinct morphology and distribution of precipitates in the crystals are also correlated with orientation,which causes the increase in the maximum elongation difference to 20.8%in all selected single crystals.Notably,SC1,with a precipitate volume fraction of 2.65%,exhibits more severe slip localization compared to room temperature conditions,while SC2,with a precipitate volume fraction of 4.79%,demonstrates cross-slip characteristics,significantly enhancing the plastic deformation capacity of the Al−Cu−Li alloy.
基金Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)Grant Number(PLN201802).
文摘The low porosity and low permeability of tight oil reservoirs call for improvements in the current technologies for oil recovery.Traditional chemical solutions with large molecular size cannot effectively flow through the nanopores of the reservoir.In this study,the feasibility of Nanofluids has been investigated using a high pressure high temperature core-holder and nuclear magnetic resonance(NMR).The results of the experiments indicate that the specified Nanofluids can enhance the tight oil recovery significantly.The water and oil relative permeability curve shifts to the high water saturation side after Nanofluid flooding,thereby demonstrating an increase in the water wettability of the core.In the Nanofluid flooding process the oil recovery was enhanced by 15.1%,compared to waterflooding stage.The T2 spectra using the NMR show that after Nanofluid flooding,a 7.18%increment in oil recovery factor was gained in the small pores,a 4.9%increase in the middle pores,and a 0.29%increase in the large pores.These results confirm that the Nanofluids can improve the flow state in micro-sized pores inside the core and increase the ultimate oil recovery factor.
文摘Experimentally, the best design gives estimates of the desired effects and contrasts with maximum precision. Efficiency as a discriminating factor enables comparison of designs. The goal of Response Surface Methodology (RSM) is the determination of the best settings of the in-put variables for a maximum (or a minimum) response within a region of interest, R. This calls for fitting a model that adequately represents the mean response since such a model, is then used to locate the optimum. D-, A-, E- and T-Optimal designs of a rotatable design of degree two in four dimensions constructed using balanced incomplete block designs (BIBD) when the number of replications is less than three times the number of pairs of treatments occur together in the design and their relative efficiencies to general designs are presented. D-optimal design had 88 runs after replicating the factorial part twice and the axial part thrice with an optimal variance of 0.6965612 giving an efficiency of 97.7% while for A- and T-optimal designs they are formed with 112 runs each obtained by replicating the factorial part two times and axial part six times. Their optimal variances are 0.05798174 and 1.29828 respectively, with efficiency of 71.8% for A-optimal and 87.5% for T-optimal design. E-optimal design was found to be the most efficient design with an only 32 runs comprising only of the factorial part and with an optimal variance of 0.4182000, attaining an efficiency of approximately 1%. This study proposes the adoption of the E-optimal design in estimating the parameters of a rotatable second-order degree model constructed using BIBD for less costs and time saving.