In this paper, we present a new method to determine the relative permittivity of periodic stratified media using the iterative time-reversal method. Based on transmission line theory, the focal peak value of iterative...In this paper, we present a new method to determine the relative permittivity of periodic stratified media using the iterative time-reversal method. Based on transmission line theory, the focal peak value of iterative time-reversal electro- magnetic waves, which contain information about the periodic stratified medium, is computed in pulse-echo mode. Using the relationship between the focal peak value and the relative permittivity of the periodic stratified medium, the relative permittivity can be obtained by measuring the focal peak value. Numerical simulations are conducted, and the results demonstrate the feasibility of the proposed approach to the measurement of the relative permittivity of a periodic stratified medium.展开更多
Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the polarization sheet charge density and relative permittivity a...Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the polarization sheet charge density and relative permittivity are analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the values of relative permittivity and polarization sheet charge density of AlN/GaN diode are both much smaller than the ones of AlGaN/GaN diode, and also much lower than the theoretical values. Moreover, by fitting the measured forward 1-V curves, the extracted dislocations existing in the barrier layer of the AlN/GaN diode are found to be much more than those of the AlGaN/GaN diode. As a result, the conclusion can be made that compared with AlGaN/GaN diode the Schottky metal has an enhanced influence on the strain of the extremely thinner AlN barrier layer, which is attributed to the more dislocations.展开更多
Using the measured capacitance voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barr...Using the measured capacitance voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barrier layer was analysed and calculated by self-consistently solving SchrSdinger's and Poisson's equations. It is shown that the calculated values of the relative permittivity are different from those formerly reported, and reverse biasing the Ni Schottky contact has an influence on the value of the relative permittivity. As the reverse bias increases from 0 V to -3 V, the value of the relative permittivity decreases from 7.184 to 7.093.展开更多
Ni Schottky contacts on A1GaN/CaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N2 ambience at 600 ~C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h),...Ni Schottky contacts on A1GaN/CaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N2 ambience at 600 ~C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 ~C, 600 ~C, 700 ~C, and 800 ~C). With the measured current-voltage (I-V) and capacitance-voltage (C V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the A1GaN barrier layer was related to the piezoelectric and the spontaneous polarization of the A1GaN barrier layer. The relative permittivity was in proportion to the strain of the A1GaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the A1GaN barrier totally relaxed (after 18 h at 600 ~C in the current study), and then the relative permittivity was almost a constant with the increased thermal strcss time. When the sample was treated at 800 ~C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the A1GaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of A1GaN/GaN heterostructure devices.展开更多
The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting t...The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting the relative permittivity of particle/polymer nanocomposites from the microstructure is of great significance.However,the classical effective medium theory and physics-based numerical calculation represented by finite element method are time-consuming and cumbersome for complex structures and nonlinear problem.The work explores a novel architecture combining the convolutional neural network(ConvNet)and finite element method(FEM)to predict the relative permittivity of nanocomposite dielectrics with incorporated barium titanite(BT)particles in polyvinylidene fluoride(PVDF)matrix.The ConvNet was trained and evaluated on big datasets with 14266 training data and 3514 testing data generated form a programmatic algorithm.Through numerical experiments,we demonstrate that the trained network can efficiently provide an accurate agreement between the ConvNet model and FEM by virtue of the significant evaluation metrics R2,which reaches as high as 0.9783 and 0.9375 on training and testing data,respectively.The strong universality of the presented method allows for an extension to fast and accurately predict other properties of the nanocomposite dielectrics.展开更多
The most important parameter affecting ground-penetrating radar (GPR) measurements is the complex effective relative permittivity εr^*,eff because it controls the propagation velocity and the reflection of GPR pul...The most important parameter affecting ground-penetrating radar (GPR) measurements is the complex effective relative permittivity εr^*,eff because it controls the propagation velocity and the reflection of GPR pulses. Knowing εr^*,eff of soils passed through by electromagnetic waves increases accuracy in soil thickness and interface identification. Complex effective relative permittivity εr^*,eff= εr^*,eff - jεr^*,effof 25 soil samples with textures ranging from loamy sand to silty clay was measured using the two-electrode parallelplate method. The measurements were conducted at defined water contents for frequencies from 1 MHz to 3 GHz. The results confirm the frequency dependence of εr^*,eff and show that the dielectric behavior of soil-water mixtures is a function of water content. Applying the experimental data of this study with predictions based on the empirical model by Toppet aL (1980), we find that Topp et aL's curve tends to underestimate the real part of εr^*,eff measured. Along with frequency and water content, soil texture and organic matter affect soil permittivity. Moreover, the real part of εr^*,eff increases at higher dry bulk densities. Output from our calibration model enables us to predict εr^*,eff for the soil samples which were tested under the actual in situ soil water content. This results in high accuracy of soil thickness prediction.展开更多
The relative permittivities(ε) for the glucose+glycine+water mixtures were measured at temperatures of 278.15 to 313.15 K. The experimental values for a complete data set were critically analyzed. The experimenta...The relative permittivities(ε) for the glucose+glycine+water mixtures were measured at temperatures of 278.15 to 313.15 K. The experimental values for a complete data set were critically analyzed. The experimental va- lues were fitted to some empirical equations as the functions of temperature and/or compositions of the solution. At given temperatures and compositions of glycine, the dependences of the relative permittivities on the molar fraction of glucose(Glc) and glycine(Gly) can be described by a linear or quadratic equation, respectively. A comparison of the εGlc values of glucose solution with the εGla values of galactose solution indicates that the relative permittivities of the ternary solutions containing glucose are smaller than those containing galactose under the same conditions. This difference arises from the slight difference in the stereo-structures of the saccharide molecules.展开更多
This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured ...This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.展开更多
The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. Th...The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.展开更多
In this research work,a few sets of experiments have been performed in high voltage laboratory on various cellulosic insulating materials like diamond-dotted paper,paper phenolic sheets,cotton phenolic sheets,leathero...In this research work,a few sets of experiments have been performed in high voltage laboratory on various cellulosic insulating materials like diamond-dotted paper,paper phenolic sheets,cotton phenolic sheets,leatheroid,and presspaper,to measure different electrical parameters like breakdown strength,relative permittivity,loss tangent,etc.Considering the dependency of breakdown strength on other physical parameters,different Artificial Neural Network(ANN)models are proposed for the prediction of breakdown strength.The ANN model results are compared with those obtained experimentally and also with the values already predicted from an empirical relation suggested by Swanson and Dall.The reported results indicated that the breakdown strength predicted from the ANN model is in good agreement with the experimental values.展开更多
In this investigation,the dielectric behaviors of three ferroelectric liquid crystals(FLCs)belonging to a homologous series have been revealed in the frequency range of 10 Hz-10 MHz.FLCs used in this study are three-r...In this investigation,the dielectric behaviors of three ferroelectric liquid crystals(FLCs)belonging to a homologous series have been revealed in the frequency range of 10 Hz-10 MHz.FLCs used in this study are three-ring calamitic LCs,namely(S)-4-(((4-(octan-2-yloxy)phenyl)imino)methyl)phenyl 4-(n-octyloxy)benzoate,(S)-4-(((4-(octan-2-yloxy)phenyl)imino)methyl)phenyl 4-(n-decyloxy)benzoate and(S)-4-(((4-(octan-2-yloxy)phenyl)imino)methyl)phenyl 4-(n-undecyloxy)benzoate.The polarizing optical microscopic and differential scanning calorimetric results confirm that these compounds,synthesized as per the known synthetic steps,show not only a ferroelectrically switchable chiral smectic C(SmC*)phase over a wide thermal range,but also other mesophases such as blue phase-I/II(BP-I/II),chiral nematic(N*)and unknown smectic(SmX)phases.Several essential dielectric parameters of the FLC phase have been measured at different temperatures.The relative permittivity has been measured with the variations of temperature and frequency.Besides,the dielectric loss and tanδhave been measured.Different dielectric relaxations have been calculated and explained at the molecular level.The systematic measurements revealed a strong anomaly,and crossover of relative permittivity values for the FLCs has been determined at selective frequencies between 1 kHz and 20 kHz.Strong dielectric anomaly/fall for the response function infers the involvement of collective response of dipolar assembly confined to ferroelectric Weiss domains.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61071031,61107018,and 61201089)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20100185110021 and 20120185130001)+2 种基金the Program for Changjiang Scholars and Innovation Team in University,China(Grant No.IRT1113)the Natural Science Foundation of the Higher Education Institutions of Anhui Province(Grant No.KJ2013Z287)Fundamental Research Fund for the Central Universities(Grant No.ZYGX2011YB018)
文摘In this paper, we present a new method to determine the relative permittivity of periodic stratified media using the iterative time-reversal method. Based on transmission line theory, the focal peak value of iterative time-reversal electro- magnetic waves, which contain information about the periodic stratified medium, is computed in pulse-echo mode. Using the relationship between the focal peak value and the relative permittivity of the periodic stratified medium, the relative permittivity can be obtained by measuring the focal peak value. Numerical simulations are conducted, and the results demonstrate the feasibility of the proposed approach to the measurement of the relative permittivity of a periodic stratified medium.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61306113,60876009,and 11174182)
文摘Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current-voltage and capacitance-voltage curves, the polarization sheet charge density and relative permittivity are analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the values of relative permittivity and polarization sheet charge density of AlN/GaN diode are both much smaller than the ones of AlGaN/GaN diode, and also much lower than the theoretical values. Moreover, by fitting the measured forward 1-V curves, the extracted dislocations existing in the barrier layer of the AlN/GaN diode are found to be much more than those of the AlGaN/GaN diode. As a result, the conclusion can be made that compared with AlGaN/GaN diode the Schottky metal has an enhanced influence on the strain of the extremely thinner AlN barrier layer, which is attributed to the more dislocations.
基金supported by the National Natural Science Foundation of China (Grant No 10774090)the National Basic Research Program of China (Grant No 2007CB936602)
文摘Using the measured capacitance voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barrier layer was analysed and calculated by self-consistently solving SchrSdinger's and Poisson's equations. It is shown that the calculated values of the relative permittivity are different from those formerly reported, and reverse biasing the Ni Schottky contact has an influence on the value of the relative permittivity. As the reverse bias increases from 0 V to -3 V, the value of the relative permittivity decreases from 7.184 to 7.093.
基金Project supported by the National Natural Science Foundation of China (Grant No.10774090)the National Basic Research Program of China (Grant No.2007CB936602)
文摘Ni Schottky contacts on A1GaN/CaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N2 ambience at 600 ~C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 ~C, 600 ~C, 700 ~C, and 800 ~C). With the measured current-voltage (I-V) and capacitance-voltage (C V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the A1GaN barrier layer was related to the piezoelectric and the spontaneous polarization of the A1GaN barrier layer. The relative permittivity was in proportion to the strain of the A1GaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the A1GaN barrier totally relaxed (after 18 h at 600 ~C in the current study), and then the relative permittivity was almost a constant with the increased thermal strcss time. When the sample was treated at 800 ~C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the A1GaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of A1GaN/GaN heterostructure devices.
基金supported by the National Natural Science Foundation of China(Nos.52107018 and 51937007)National Key Research and Development Program of China(No.2021YFB2401502).
文摘The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting the relative permittivity of particle/polymer nanocomposites from the microstructure is of great significance.However,the classical effective medium theory and physics-based numerical calculation represented by finite element method are time-consuming and cumbersome for complex structures and nonlinear problem.The work explores a novel architecture combining the convolutional neural network(ConvNet)and finite element method(FEM)to predict the relative permittivity of nanocomposite dielectrics with incorporated barium titanite(BT)particles in polyvinylidene fluoride(PVDF)matrix.The ConvNet was trained and evaluated on big datasets with 14266 training data and 3514 testing data generated form a programmatic algorithm.Through numerical experiments,we demonstrate that the trained network can efficiently provide an accurate agreement between the ConvNet model and FEM by virtue of the significant evaluation metrics R2,which reaches as high as 0.9783 and 0.9375 on training and testing data,respectively.The strong universality of the presented method allows for an extension to fast and accurately predict other properties of the nanocomposite dielectrics.
基金supported by the German Research Foundation (DFG) (No. SFB 299)
文摘The most important parameter affecting ground-penetrating radar (GPR) measurements is the complex effective relative permittivity εr^*,eff because it controls the propagation velocity and the reflection of GPR pulses. Knowing εr^*,eff of soils passed through by electromagnetic waves increases accuracy in soil thickness and interface identification. Complex effective relative permittivity εr^*,eff= εr^*,eff - jεr^*,effof 25 soil samples with textures ranging from loamy sand to silty clay was measured using the two-electrode parallelplate method. The measurements were conducted at defined water contents for frequencies from 1 MHz to 3 GHz. The results confirm the frequency dependence of εr^*,eff and show that the dielectric behavior of soil-water mixtures is a function of water content. Applying the experimental data of this study with predictions based on the empirical model by Toppet aL (1980), we find that Topp et aL's curve tends to underestimate the real part of εr^*,eff measured. Along with frequency and water content, soil texture and organic matter affect soil permittivity. Moreover, the real part of εr^*,eff increases at higher dry bulk densities. Output from our calibration model enables us to predict εr^*,eff for the soil samples which were tested under the actual in situ soil water content. This results in high accuracy of soil thickness prediction.
基金Supported by the National Natural Science Foundation of China(No.20973055)
文摘The relative permittivities(ε) for the glucose+glycine+water mixtures were measured at temperatures of 278.15 to 313.15 K. The experimental values for a complete data set were critically analyzed. The experimental va- lues were fitted to some empirical equations as the functions of temperature and/or compositions of the solution. At given temperatures and compositions of glycine, the dependences of the relative permittivities on the molar fraction of glucose(Glc) and glycine(Gly) can be described by a linear or quadratic equation, respectively. A comparison of the εGlc values of glucose solution with the εGla values of galactose solution indicates that the relative permittivities of the ternary solutions containing glucose are smaller than those containing galactose under the same conditions. This difference arises from the slight difference in the stereo-structures of the saccharide molecules.
基金National Research Foundation of Korea(NRF)Funded by the Korean Government(MSIT)under Grant Nos.RS-2023-00210317 and 2021R1A4A3030117the Digital-Based Building Construction and Safety Supervision Technology Research Program Funded by the Ministry of Land,Infrastructure,and Transport of the Korean Government under Grant No.RS-2022-00143493the Korea Institute of Civil Engineering and Building Technology(KICT)of the Republic of Korea,Project under Grant No.2023-0097。
文摘This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.
文摘The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.
文摘In this research work,a few sets of experiments have been performed in high voltage laboratory on various cellulosic insulating materials like diamond-dotted paper,paper phenolic sheets,cotton phenolic sheets,leatheroid,and presspaper,to measure different electrical parameters like breakdown strength,relative permittivity,loss tangent,etc.Considering the dependency of breakdown strength on other physical parameters,different Artificial Neural Network(ANN)models are proposed for the prediction of breakdown strength.The ANN model results are compared with those obtained experimentally and also with the values already predicted from an empirical relation suggested by Swanson and Dall.The reported results indicated that the breakdown strength predicted from the ANN model is in good agreement with the experimental values.
文摘In this investigation,the dielectric behaviors of three ferroelectric liquid crystals(FLCs)belonging to a homologous series have been revealed in the frequency range of 10 Hz-10 MHz.FLCs used in this study are three-ring calamitic LCs,namely(S)-4-(((4-(octan-2-yloxy)phenyl)imino)methyl)phenyl 4-(n-octyloxy)benzoate,(S)-4-(((4-(octan-2-yloxy)phenyl)imino)methyl)phenyl 4-(n-decyloxy)benzoate and(S)-4-(((4-(octan-2-yloxy)phenyl)imino)methyl)phenyl 4-(n-undecyloxy)benzoate.The polarizing optical microscopic and differential scanning calorimetric results confirm that these compounds,synthesized as per the known synthetic steps,show not only a ferroelectrically switchable chiral smectic C(SmC*)phase over a wide thermal range,but also other mesophases such as blue phase-I/II(BP-I/II),chiral nematic(N*)and unknown smectic(SmX)phases.Several essential dielectric parameters of the FLC phase have been measured at different temperatures.The relative permittivity has been measured with the variations of temperature and frequency.Besides,the dielectric loss and tanδhave been measured.Different dielectric relaxations have been calculated and explained at the molecular level.The systematic measurements revealed a strong anomaly,and crossover of relative permittivity values for the FLCs has been determined at selective frequencies between 1 kHz and 20 kHz.Strong dielectric anomaly/fall for the response function infers the involvement of collective response of dipolar assembly confined to ferroelectric Weiss domains.