Under dense urban fading environment, performance of joint multi-path parameter estimation method based on traditional point signal model degrades seriously. In this paper, a new space and time signal model based on m...Under dense urban fading environment, performance of joint multi-path parameter estimation method based on traditional point signal model degrades seriously. In this paper, a new space and time signal model based on multipath distribution function is given after new space and time manifold is reconstructed. Then joint spacetime signal subspace is obtained by converting acquired channel from time domain to frequency domain .Then space and time spectrum is formulated by the space sub-matrix and time sub-matrix taken out of joint space-time signal subspace, and parameters are estimated by searching the minimum eigenvalues of the space matrix and the time matrix. Lastly, A space and time parameters matching process is performed by using the orthogonal property between joint noise subspace and the space-time manifold. In contrast with tradition MUSIC, the algorithm we present here only need two 1- dimension searching and was not sensitive to different distribution function.展开更多
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real ti...Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.展开更多
基金the National Natural Science Foundation of China (60372022).
文摘Under dense urban fading environment, performance of joint multi-path parameter estimation method based on traditional point signal model degrades seriously. In this paper, a new space and time signal model based on multipath distribution function is given after new space and time manifold is reconstructed. Then joint spacetime signal subspace is obtained by converting acquired channel from time domain to frequency domain .Then space and time spectrum is formulated by the space sub-matrix and time sub-matrix taken out of joint space-time signal subspace, and parameters are estimated by searching the minimum eigenvalues of the space matrix and the time matrix. Lastly, A space and time parameters matching process is performed by using the orthogonal property between joint noise subspace and the space-time manifold. In contrast with tradition MUSIC, the algorithm we present here only need two 1- dimension searching and was not sensitive to different distribution function.
基金supported by the National Key Technology Research and Development Program of China(863 Program, Grant No.2009BAG18B03)
文摘Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.