Originally, Maxwell attempted to express his electromagnetic theory using four-dimensional mathematics of quaternions. Maxwell’s equations were later re-written in a three-dimensional real vector form, which is how t...Originally, Maxwell attempted to express his electromagnetic theory using four-dimensional mathematics of quaternions. Maxwell’s equations were later re-written in a three-dimensional real vector form, which is how the theory is presented today. Thus, an interesting question remains whether we can derive electromagnetic equations analytically from the basic mathematical principles of quaternion algebra and calculus, resulting in general and analytic matter equations. This question seems highly intriguing. Previously, we developed a mathematical theory of time using a normed division algebra of real quaternions [1]. In this study, we extend the theory of time by presenting a new analytical derivation of electromagnetic matter equations using the calculus of real quaternions, as originally intended by Maxwell. Therefore, we propose a novel mathematical definition of the quaternion path derivative using the properties of quaternion division. We then apply the quaternion derivative to an external electromagnetic potential and assume that the first quaternion derivative represents the quaternion electromagnetic force. Next, we assume that the second derivative, or quaternion Laplacian operator, applied to an external electromagnetic potential leads to the quaternion electromagnetic current density. The new analytical expressions are similar to the original empirical Maxwell equations, except for an additional scalar electric field, which allows for a novel formulation of Ohm’s conductivity law. We demonstrate that the resulting analytical equations can be written equivalently using either electromagnetic potentials or fields. Finally, we summarize the key postulates and equations of the new electromagnetic matter theory, which were based on normed division algebra and the calculus of quaternions. The resulting theory appears to be a useful analytical enhancement of the original Maxwell equations, and therefore, seems highly comprehensive, logical, and compelling.展开更多
文摘Originally, Maxwell attempted to express his electromagnetic theory using four-dimensional mathematics of quaternions. Maxwell’s equations were later re-written in a three-dimensional real vector form, which is how the theory is presented today. Thus, an interesting question remains whether we can derive electromagnetic equations analytically from the basic mathematical principles of quaternion algebra and calculus, resulting in general and analytic matter equations. This question seems highly intriguing. Previously, we developed a mathematical theory of time using a normed division algebra of real quaternions [1]. In this study, we extend the theory of time by presenting a new analytical derivation of electromagnetic matter equations using the calculus of real quaternions, as originally intended by Maxwell. Therefore, we propose a novel mathematical definition of the quaternion path derivative using the properties of quaternion division. We then apply the quaternion derivative to an external electromagnetic potential and assume that the first quaternion derivative represents the quaternion electromagnetic force. Next, we assume that the second derivative, or quaternion Laplacian operator, applied to an external electromagnetic potential leads to the quaternion electromagnetic current density. The new analytical expressions are similar to the original empirical Maxwell equations, except for an additional scalar electric field, which allows for a novel formulation of Ohm’s conductivity law. We demonstrate that the resulting analytical equations can be written equivalently using either electromagnetic potentials or fields. Finally, we summarize the key postulates and equations of the new electromagnetic matter theory, which were based on normed division algebra and the calculus of quaternions. The resulting theory appears to be a useful analytical enhancement of the original Maxwell equations, and therefore, seems highly comprehensive, logical, and compelling.