The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi...The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.展开更多
Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in...Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in the plasma is analyzed in terms of the wave characteristics. It is shown that for a negative density gradient, the observed local wavelength decreases monotonically with time, but for a positive density gradient, it first increases and then decreases with time, accompanied by reversal of the wave phase. However, in both cases the local wavelength eventually decreases with time since Landau damping becomes significant as the wavelength becomes of the order of the plasma Debye length. Results from particle-in-cell simulations agree well with theoretical analyses of the wavelength variation.展开更多
In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range...In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.展开更多
In geostationary orbits and other quasi-vacuum environments,relativistic electron beams are affected by the initial emittance and space charge effects during the propagation process,resulting in beam quality degradati...In geostationary orbits and other quasi-vacuum environments,relativistic electron beams are affected by the initial emittance and space charge effects during the propagation process,resulting in beam quality degradation.Furthermore,axial energy distribution change in the beam and the axial transient electromagnetic effect caused by current changes in the head and tail regions of the beam also cause the beam to expand and affect its quality.In this study,the particle-in-cell method was used to construct a long-range propagation model of a relativistic electron beam in a vacuum environment.By calculating and simulating the axial energy distribution of the beam and the changes in the transient electromagnetic field,the axial effect during the propagation process was analyzed,and the parameter change law of the effective propagation of the beam was explored.This provided a theoretical reference for a more accurate assessment of the beam quality during propagation.展开更多
This paper addresses the formulae and numerical issues related to the possibility that fast wave may be grown when a relativistic electron beam through an ion channel in a cylindrical metal waveguide. To derive the di...This paper addresses the formulae and numerical issues related to the possibility that fast wave may be grown when a relativistic electron beam through an ion channel in a cylindrical metal waveguide. To derive the dispersion equations of the beam-wave interaction, it solves relativistic Lorentz equation and Maxwell's equations for appropriate boundary conditions. It has been found in this waveguide structure that the TM0m modes are the rational operating modes of coupling between the electromagnetic modes and the betatron modes. The interaction of the dispersion curves of the electromagnetic TM0m modes and the upper betatron modes is studied. The growth rates of the wave are obtained, and the effects of the beam radius, the beam energy, the plasma frequency, and the beam plasma frequency on the wave growth rate are numerically calculated and discussed.展开更多
The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting of warm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schr?dinger ...The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting of warm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schr?dinger equation including one additional term that comes from the effect of relativistic electron beam is derived. It is found that the inclusion of a relativistic electron beam would modify the modulational instability of the wave packet and could not admit any stationary soliton waves.展开更多
A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-la...A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.展开更多
It is known that ion-focused regime(IFR)can effectively suppress expansion of a relativistic electron beam(REB).Using the particle-in-cell Monte Carlo collision(PIC-MCC)method,we numerically investigate the propagatio...It is known that ion-focused regime(IFR)can effectively suppress expansion of a relativistic electron beam(REB).Using the particle-in-cell Monte Carlo collision(PIC-MCC)method,we numerically investigate the propagation of an REB in neutral gas.The results demonstrate that the beam body is charge neutralization and a stable IFR can be established.As a result,the beam transverse dimensions and longitudinal velocities keep close to the initial parameters.We also calculate the charge and current neutralization factors of the REB.Combined with envelope equations,we obtain the variations of beam envelopes,which agree well with the PIC simulations.However,both the energy loss and instabilities of the REB may lead to a low transport efficiency during long-range propagation.It is proved that decreasing the initial pulse length of the REB can avoid the influence of electron avalanche.Using parts of REB pulses to build a long-distance IFR in advance can improve the beam quality of subsequent pulses.Further,a long-distance IFR may contribute to the implementation of long-range propagation of the REB in space environment.展开更多
We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relati...We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam(REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.展开更多
We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found ...We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.展开更多
Electron vortex beams(EVBs)have potential applications in nanoscale magnetic probes of condensed matter and nanoparticle manipulation as well as radiation physics.Recently,a relativistic electron vortex beam(REVB)has ...Electron vortex beams(EVBs)have potential applications in nanoscale magnetic probes of condensed matter and nanoparticle manipulation as well as radiation physics.Recently,a relativistic electron vortex beam(REVB)has been proposed[Phys.Rev.Lett.107174802(2011)].Compared with EVBs,except for orbital angular momentum,an REVB has intrinsic relativistic effect,i.e.,spin angular momentum and spin-orbit coupling.We study the electromagnetic field of an REVB analytically.We show that the electromagnetic field can be separated into two parts,one is only related to orbital quantum number,and the other is related to spin-orbit coupling effect.Exploiting this separation property,the difference between the electromagnetic fields of the REVB in spin-up and spin-down states can be used as a demonstration of the relativistic quantum effect.The linear momentum and angular momentum of the generated electromagnetic field have been further studied and it is shown that the linear momentum is weakly dependent on the spin state;while the angular momentum is evidently dependent on the spin state and linearly increases with the topological charge of electron vortex beam.The electromagnetic and mechanical properties of the REVB could be useful for studying the interaction between REVBs and materials.展开更多
Nonlinear mode evolution for relativistic electrons in dense plasmas is analyzed in a three-dimensional fluid approach. Similar to the results previously obtained in particle-in-cell simulations, it is found that obli...Nonlinear mode evolution for relativistic electrons in dense plasmas is analyzed in a three-dimensional fluid approach. Similar to the results previously obtained in particle-in-cell simulations, it is found that oblique modes dominate two-stream and filamentation modes in the linear stage. On the other hand a power spectrum analysis shows the nonlinear development of the high wavenumber modes.展开更多
The propagation characteristics of the beam under various initial conditions are in-vestigated by means of PIC method.The influences of density modulation and velocity modulationon the propagation characteristics are ...The propagation characteristics of the beam under various initial conditions are in-vestigated by means of PIC method.The influences of density modulation and velocity modulationon the propagation characteristics are discussed and compared.The results reveal that by chang-iug the amplitude of the two kinds of modulations and the phase difference between them,the展开更多
In this paper, we present a design where a bunched relativistic electron beam traversing inside the rectangular dielectric-loaded (DL) waveguide is used as a high power microwave generation device. Two kinds of meth...In this paper, we present a design where a bunched relativistic electron beam traversing inside the rectangular dielectric-loaded (DL) waveguide is used as a high power microwave generation device. Two kinds of methods of calculating the electromagnetic (EM) field excited by a bunched beam are introduced, and in the second method the calculation of EM pulse length is discussed in detail. The desired operating mode is the LSM11 due to its strong interaction with the electron beam. For the designed 7.8 GHz operating frequency, with a 100 nC/bunch drive train of electron bunches separated by 0.769 ns, we find that high gradient (〉 30 MV/m) and high power (〉 160 MW) can be generated. An output coupler is also designed which is able to extract the generated power to standard waveguides with a 94% coupling efficiency.展开更多
The paper systematically describes the theoretical research on Cerenkov effect of REB in optical fibres. The analytical expressions for light generation ,collection efficiency ,electron incident angle .the Cerenkov ra...The paper systematically describes the theoretical research on Cerenkov effect of REB in optical fibres. The analytical expressions for light generation ,collection efficiency ,electron incident angle .the Cerenkov radiation sensitivity of the optical fibre to the current density of the REB stream.and the response of the sensitivity to both electron energy and electron incident angles are given. The typical sensor system for REB measurement is presented. The dynamic range and bandwidth are quantitatively analyzed. The calculation results are illustrated,展开更多
In this paper we discuss the theory of undulator radiation in an electromagnet undulator. We discuss the spectral properties of undulator radiation when electrons are injected off the undulator axis. This paper highli...In this paper we discuss the theory of undulator radiation in an electromagnet undulator. We discuss the spectral properties of undulator radiation when electrons are injected off the undulator axis. This paper highlights the distinctive features of the radiation spectrum from electromagnet undulators, as compared to PPM undulators.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700)the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400)Yangyang Development Fund,China。
文摘The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
基金supported by the National Key R&D Program of China (No. 2016YFA0401100)National Natural Science Foundation of China (Nos. 12175154, 11875092, and 12005149)the Natural Science Foundation of Top Talent of Shenzhen Technology University (Nos. 2019010801001 and 2019020801001)。
文摘Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in the plasma is analyzed in terms of the wave characteristics. It is shown that for a negative density gradient, the observed local wavelength decreases monotonically with time, but for a positive density gradient, it first increases and then decreases with time, accompanied by reversal of the wave phase. However, in both cases the local wavelength eventually decreases with time since Landau damping becomes significant as the wavelength becomes of the order of the plasma Debye length. Results from particle-in-cell simulations agree well with theoretical analyses of the wavelength variation.
基金supported by National Natural Science Foundation of China (Nos. 61372050, U1730247)
文摘In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.
基金National Natural Science Foundation of China(Nos.61372050,U1730247)the HighPower Microwave Key Laboratory Foundation Program(No.6142605200301)。
文摘In geostationary orbits and other quasi-vacuum environments,relativistic electron beams are affected by the initial emittance and space charge effects during the propagation process,resulting in beam quality degradation.Furthermore,axial energy distribution change in the beam and the axial transient electromagnetic effect caused by current changes in the head and tail regions of the beam also cause the beam to expand and affect its quality.In this study,the particle-in-cell method was used to construct a long-range propagation model of a relativistic electron beam in a vacuum environment.By calculating and simulating the axial energy distribution of the beam and the changes in the transient electromagnetic field,the axial effect during the propagation process was analyzed,and the parameter change law of the effective propagation of the beam was explored.This provided a theoretical reference for a more accurate assessment of the beam quality during propagation.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 10775100 and 90503008)the Science Foundation of China Academy of Engineering Physics (Grant No. 10576019)the Fund of Theoretical Nuclear Physics Center,National Laboratory of Heavy Ion Accelerator Facility of Lanzhou
文摘This paper addresses the formulae and numerical issues related to the possibility that fast wave may be grown when a relativistic electron beam through an ion channel in a cylindrical metal waveguide. To derive the dispersion equations of the beam-wave interaction, it solves relativistic Lorentz equation and Maxwell's equations for appropriate boundary conditions. It has been found in this waveguide structure that the TM0m modes are the rational operating modes of coupling between the electromagnetic modes and the betatron modes. The interaction of the dispersion curves of the electromagnetic TM0m modes and the upper betatron modes is studied. The growth rates of the wave are obtained, and the effects of the beam radius, the beam energy, the plasma frequency, and the beam plasma frequency on the wave growth rate are numerically calculated and discussed.
文摘The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting of warm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schr?dinger equation including one additional term that comes from the effect of relativistic electron beam is derived. It is found that the inclusion of a relativistic electron beam would modify the modulational instability of the wave packet and could not admit any stationary soliton waves.
基金supported by National Natural Science Foundation of China(Nos.12075046 and 11775042)。
文摘A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.
基金supported by the Joint Funds of the National Natural Science Foundation of China(Grant Nos.61372050 and U1730247)。
文摘It is known that ion-focused regime(IFR)can effectively suppress expansion of a relativistic electron beam(REB).Using the particle-in-cell Monte Carlo collision(PIC-MCC)method,we numerically investigate the propagation of an REB in neutral gas.The results demonstrate that the beam body is charge neutralization and a stable IFR can be established.As a result,the beam transverse dimensions and longitudinal velocities keep close to the initial parameters.We also calculate the charge and current neutralization factors of the REB.Combined with envelope equations,we obtain the variations of beam envelopes,which agree well with the PIC simulations.However,both the energy loss and instabilities of the REB may lead to a low transport efficiency during long-range propagation.It is proved that decreasing the initial pulse length of the REB can avoid the influence of electron avalanche.Using parts of REB pulses to build a long-distance IFR in advance can improve the beam quality of subsequent pulses.Further,a long-distance IFR may contribute to the implementation of long-range propagation of the REB in space environment.
基金supported by the Ministry of Education and Science of Ukraine under Grant No.0117U002253
文摘We developed a cubic non-linear theory describing the dynamics of the multiharmonic spacecharge wave(SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam(REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.
基金Supported by the Ministry of Education and Science of Ukraine under Grant No 0117U002253
文摘We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal generation mode, and the reduction of the overall system dimensions.
基金the National Natural Science Foundation of China(Grant Nos.11574085,91536218,and 11834003)the 111 Project,China(Grant No.B12024)+1 种基金the National Key Research and Development Program of China(Grant No.2017YFA0304201)the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.2019-01-07-00-05-E00079)。
文摘Electron vortex beams(EVBs)have potential applications in nanoscale magnetic probes of condensed matter and nanoparticle manipulation as well as radiation physics.Recently,a relativistic electron vortex beam(REVB)has been proposed[Phys.Rev.Lett.107174802(2011)].Compared with EVBs,except for orbital angular momentum,an REVB has intrinsic relativistic effect,i.e.,spin angular momentum and spin-orbit coupling.We study the electromagnetic field of an REVB analytically.We show that the electromagnetic field can be separated into two parts,one is only related to orbital quantum number,and the other is related to spin-orbit coupling effect.Exploiting this separation property,the difference between the electromagnetic fields of the REVB in spin-up and spin-down states can be used as a demonstration of the relativistic quantum effect.The linear momentum and angular momentum of the generated electromagnetic field have been further studied and it is shown that the linear momentum is weakly dependent on the spin state;while the angular momentum is evidently dependent on the spin state and linearly increases with the topological charge of electron vortex beam.The electromagnetic and mechanical properties of the REVB could be useful for studying the interaction between REVBs and materials.
基金supported by National Natural Science Foundation of China(Nos.40731056,10778613,and 10575018)the National Basic Research Program of China(No.2008CB787103)
文摘Nonlinear mode evolution for relativistic electrons in dense plasmas is analyzed in a three-dimensional fluid approach. Similar to the results previously obtained in particle-in-cell simulations, it is found that oblique modes dominate two-stream and filamentation modes in the linear stage. On the other hand a power spectrum analysis shows the nonlinear development of the high wavenumber modes.
基金National 863-803 Project of China(No.2002AA834020)
文摘The propagation characteristics of the beam under various initial conditions are in-vestigated by means of PIC method.The influences of density modulation and velocity modulationon the propagation characteristics are discussed and compared.The results reveal that by chang-iug the amplitude of the two kinds of modulations and the phase difference between them,the
基金Project supported by the State Key Program of National Natural Science Foundation of China (Grant No 60532010)
文摘In this paper, we present a design where a bunched relativistic electron beam traversing inside the rectangular dielectric-loaded (DL) waveguide is used as a high power microwave generation device. Two kinds of methods of calculating the electromagnetic (EM) field excited by a bunched beam are introduced, and in the second method the calculation of EM pulse length is discussed in detail. The desired operating mode is the LSM11 due to its strong interaction with the electron beam. For the designed 7.8 GHz operating frequency, with a 100 nC/bunch drive train of electron bunches separated by 0.769 ns, we find that high gradient (〉 30 MV/m) and high power (〉 160 MW) can be generated. An output coupler is also designed which is able to extract the generated power to standard waveguides with a 94% coupling efficiency.
文摘The paper systematically describes the theoretical research on Cerenkov effect of REB in optical fibres. The analytical expressions for light generation ,collection efficiency ,electron incident angle .the Cerenkov radiation sensitivity of the optical fibre to the current density of the REB stream.and the response of the sensitivity to both electron energy and electron incident angles are given. The typical sensor system for REB measurement is presented. The dynamic range and bandwidth are quantitatively analyzed. The calculation results are illustrated,
文摘In this paper we discuss the theory of undulator radiation in an electromagnet undulator. We discuss the spectral properties of undulator radiation when electrons are injected off the undulator axis. This paper highlights the distinctive features of the radiation spectrum from electromagnet undulators, as compared to PPM undulators.