Using the phenomenological relativistic harmonic model (RHM) for quarks, we have obtained the masses of S wave charmonium states. The full Hamiltonian used in the investigation has Lorentz scalar plus vector confine...Using the phenomenological relativistic harmonic model (RHM) for quarks, we have obtained the masses of S wave charmonium states. The full Hamiltonian used in the investigation has Lorentz scalar plus vector confinement potential, along with the confined one gluon exchange potential (COGEP). A good agreement with the experimental masses for the ground state and the radially excited states is obtained for both the triplet and singlet S wave mesons. The calculated charge radii, meson decay constants, leptonic decay width, two photon decay width, and the radiative M1 decay width are in good agreement with the experimental results.展开更多
Based on a relativistic quark model approach with an effective potential , the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the co...Based on a relativistic quark model approach with an effective potential , the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.展开更多
Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributi...Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.展开更多
Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of ma...Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.展开更多
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method...We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.展开更多
Abstract The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obt...Abstract The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JR=1^+, I = 0 and for the ccnn (JR=1^+, I=O) configuration, which is not bound but slightly above the D^* D^* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the ehiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.展开更多
The mass spectrum of the S-wave mesons is considered in the frame work of relativistic harmonic model (RHM). The full Hamiltonian used in the investigation has the Lorentz scalar plus a vector harmonic-oscillator po...The mass spectrum of the S-wave mesons is considered in the frame work of relativistic harmonic model (RHM). The full Hamiltonian used in the investigation has the Lorentz scalar plus a vector harmonic-oscillator potential, the confined-one-gluon-exchange potential (COGEP) and the instanton-induced quark-antiquak interaction (Ⅲ). A good description of the mass spectrum is obtained. The respective role of Ⅲ and COGEP in the S-wave meson spectrum is discussed.展开更多
The new members of the charm-strange family Dsj^*(2317), Dsj(2460), and Ds(2632), which have the surprising properties, are challenging the present models. Many theoretical interpretations have been devoted to ...The new members of the charm-strange family Dsj^*(2317), Dsj(2460), and Ds(2632), which have the surprising properties, are challenging the present models. Many theoretical interpretations have been devoted to this issue. Most authors suggest that they are not the conventional cs^- quark model states, but possibly are four-quark states, molecule states, or mixtures of a P-wave cs^- and a four-quark state. In this work, we follow the four-quark-state picture, and study the masses of cnn^-s^-/css^-s^- states (n is u or d quark) in the chiral SU(3) quark model. The numerical results show that the mass of the mixed four-quark state (cnn^-s^-/css^-s^-) with spin parity j^P : 0^+ might not be Ds (2632). At the same time, we also conclude that Dsj^*(2317) and Dsj(2460) cannot be explained as the pure four-quark state.展开更多
With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To ...With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To calculate the transport coefficients we utilized the kinetic theory in the relaxation time approximation, where the momentum anisotropy is embedded in the estimation of both the distribution function and relaxation time. It was shown that an increase in the anisotropy parameterξmay result in a catalysis of chiral symmetry breaking. The critical endpoint(CEP) is shifted to lower temperatures and larger quark chemical potentials asξincreases, and the impact of momentum anisotropy on the CEP temperature is almost the same as that on the quark chemical potential of the CEP. The meson masses and the associated decay widths also exhibit a significant ξ dependence. It was observed that the temperature behavior of the scaled shear viscosity η/T~3 and scaled electrical conductivity σ/T exhibited a similar dip structure, with the minima of both η/T~3 and σ/T shifting toward higher temperatures with increasing ξ. Furthermore,we demonstrated that the Seebeck coefficient S decreases when the temperature rises and its sign is positive, indicating that the dominant carriers for converting the temperature gradient to the electric field are up-quarks. The Seebeck coefficient S is significantly enhanced with a largeξfor a temperature below the critical temperature.展开更多
Purpose: The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants, including the quarks, are associated with partial harmonic fractional exponents, , of a fundamental freq...Purpose: The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants, including the quarks, are associated with partial harmonic fractional exponents, , of a fundamental frequency, v<sub>F</sub>. The model has shown that the properties of the quarks are based on a progression of prime number composites. They also fall on three separate power law lines related to integer factors of the Y-intercept, , of a fundamental electromagnetic line which is scaled by the Rydberg constant, R and Planck’s constant. The quark lines are scaled by the quantum number factors {1, 2, 3}, and their Y-intercepts are referred to as n<sub>bem</sub>. The goal is to present a new proto-quark model in a six-quark inverted triangular array that defines the global organization of the valence quarks, which determines the hadronic quantum numbers, the standard hadron quark model, and the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Methods: The charm, bottom, top quarks are associated with power law line Y-intercept, n<sub>bem</sub> equal to 1;the strange and down quarks with n<sub>bem</sub> equal to 2;and the up quark with n<sub>bem</sub> equal to 3. An inverted equilateral triangular array with three rows arranged from upper row (triangle base) to bottom row (triangle vertex), is associated respectively with n<sub>bem</sub> numbers 1, 2, and 3. The novelty of our perspective thus defines a new global valence quark organization which supersedes the Standard hadron composite quark model. The quarks are ordered via relative mass, partial fractions, and n<sub>bem</sub> quantum number. The top row of our inverted triangle includes the c, b, and t quarks from left to right;the middle row depicts the d and s quarks;and the bottom row, the up quark. Results: Our array depicts a quantum generator of the global organization of the valence quarks defining the composite quark model. The vertices of the triangular array are the up quarks, the midpoints are the down quarks. All weak transitions are from a corner to a midpoint or vice versa. The standard 3 by 3 CKM matrix is generated from the new quark triangle with each up type quark (u, c, and t) transforming to each down type (d, s, and b), with their experimental flavor transition magnitudes given. Conclusion: A new quark quantum number, n<sub>bem</sub>, is an important discovery that generates a new proto-valence quark triangle that secondarily generates the composite quark model and the CKM matrix.展开更多
Starting from quantum chromodynamics,we find that aside from some terms that contribute only via the mixing of different Fock components,the baryon magnetic moment can be expressed as μB=[∑_(q)Q_(q)/(2<k0>_(q)...Starting from quantum chromodynamics,we find that aside from some terms that contribute only via the mixing of different Fock components,the baryon magnetic moment can be expressed as μB=[∑_(q)Q_(q)/(2<k0>_(q))](2S_(q)-2S_(q)+L_(q)-L_(q)),where<k0>q is the q flavor quarks average relativistic energy inside the baryon,and S_(q),L_(q),S_(q),L_(q) are quark and antiquark's relativistic spin and orbital contributions to baryon spin.We demonstrate that within an error of 1/6,this expression can be parameterized as ∑_(q)[Q_(q)/(2m^(eff)_(q))](2s_(q)-2s_(q)),(where s is the nonrelativistic Pauli spin contribution and m^(eff)_(q) is of the order of the constituent quark mass)which is just what the nonrelativistic constituent quark model adopts to give a good account of octet baryon magnetic moments.展开更多
The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinement...The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.展开更多
For studying the anisotropie strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropie pressure plus an additional Gaussian term with three free parameters ...For studying the anisotropie strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropie pressure plus an additional Gaussian term with three free parameters (A, μ and X). According to recent observations, a pulsar in a mass range of 1.97±0.04M has been measured. Hence, we take this opportunity to set the free parameters of our model. We fix X by applying boundary and stability conditions and then search the A - μ parameter space For a maximum mass range of 1.9M 〈 Mmax 〈 2.1M. Our results indicate that anisotropy increases the maximum mass M and also its corresponding radius R for a typical strange quark star. Furthermore, our model shows magnetic field and electric charge increase the anisotropy factor △. In fact, △ has a maximum on the surface and this maximum goes up in the presence of magnetic field and electric charge. Finally, we show that anisotropy can be more effective than either magnetic field or electric charge in raising maximum mass of strange quark stars.展开更多
The ratio between the anomalous magnetic moments of proton and neutron has recently been suggested to be connected to the ratio of proton momentum fractions carried by the valence quarks inside it. This moment fractio...The ratio between the anomalous magnetic moments of proton and neutron has recently been suggested to be connected to the ratio of proton momentum fractions carried by the valence quarks inside it. This moment fraction ratio is respectively evaluated by using constituent quark model and chiral quark model in order to check meson cloud effect. Our results show that the meson cloud effect is remarkable to the ratio of the proton momentum fractions, and therefore, this ratiois a sensitive test for the meson cloud effect as well as for the SU(6) symmetry breaking effect.展开更多
The nuclear gluon distribution is predicted using the constituent quark model.We point out that the nuclear shadowing and andsliadowing depress nuclear gluon field when x<0.08 and enhance it when 0.08<x<0.2.
By means of the Matsubara Green’s function method,we investigate the temperature dependence of coupling constant gqqa in soliton bag model.We find Sqqo will decrease as temperature increases in high temperature regio...By means of the Matsubara Green’s function method,we investigate the temperature dependence of coupling constant gqqa in soliton bag model.We find Sqqo will decrease as temperature increases in high temperature region and will approach zero at critical temperature T_(c).The quark deconfinement phase transition in soliton bag model is discussed.展开更多
Pion cloud effects on △-N mass splitting are studied based on quark models. Pseudo-scalar pion-quarkcoupling is discussed in the relativistic and nonrelativistic frameworks. We separately calculate the pion cloud eff...Pion cloud effects on △-N mass splitting are studied based on quark models. Pseudo-scalar pion-quarkcoupling is discussed in the relativistic and nonrelativistic frameworks. We separately calculate the pion cloud effects bythe one-pion exchange potential and by another method which is consistent with the baryon chiral perturbation theory.Remark able discrepancy in the mass splitting between the two methods is shown.展开更多
The binding energy of the six quark system with strangeness s=-5 is investigated by the SU(3)chiral constituent quark model.The single ■^(*)Ω channel calculation with spin S=Q and the coupled ■Ω-■^(*)Ω channel c...The binding energy of the six quark system with strangeness s=-5 is investigated by the SU(3)chiral constituent quark model.The single ■^(*)Ω channel calculation with spin S=Q and the coupled ■Ω-■^(*)Ω channel calculation with spin S=1 are considered.It is shown that in the spin S=0 case,the binding energy of ■^(*)Ω is ranged from 80.0 to 92.4MeV,while in the S=1 case,the additional ■^(*)Ω channel increases the binding energy of ■Ω to a range of 26.2-32.9 MgV.展开更多
The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement...The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement simultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence quark pair such as the ρ meson can also be described in this extended quark potential model.展开更多
基金the BRNS for funding the project(Sanction No.2010/37P/18/BRNS)
文摘Using the phenomenological relativistic harmonic model (RHM) for quarks, we have obtained the masses of S wave charmonium states. The full Hamiltonian used in the investigation has Lorentz scalar plus vector confinement potential, along with the confined one gluon exchange potential (COGEP). A good agreement with the experimental masses for the ground state and the radially excited states is obtained for both the triplet and singlet S wave mesons. The calculated charge radii, meson decay constants, leptonic decay width, two photon decay width, and the radiative M1 decay width are in good agreement with the experimental results.
基金国家自然科学基金,Foundations of the Chinese Academy of Sciences (X-37),the Chinese Ministry of Education (B-22),中国科学院资助项目,the Chinese Academy of Sciences
文摘Based on a relativistic quark model approach with an effective potential , the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.
基金The project supported by the Science Foundation of Chinese Academy of Engineering Physics under Contract No.42103 and for Research Doctor Subsidizes (2001)
文摘Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.
基金国家自然科学基金,中国科学院资助项目,教育部资助项目,中国科学院理论物理研究所资助项目,the Knowledge Innovation Probject Project of the Chinexe Academy of Sciences
文摘Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10047001,10347113+2 种基金the State Key Basic Research Development Program under Contract No.G200077400the Excellent Young Researcher Grant
文摘We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.10475087 and 10775146
文摘Abstract The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JR=1^+, I = 0 and for the ccnn (JR=1^+, I=O) configuration, which is not bound but slightly above the D^* D^* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the ehiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.
基金the DST for funding the project (Sanction No.SR/S2/HEP-14/2006)
文摘The mass spectrum of the S-wave mesons is considered in the frame work of relativistic harmonic model (RHM). The full Hamiltonian used in the investigation has the Lorentz scalar plus a vector harmonic-oscillator potential, the confined-one-gluon-exchange potential (COGEP) and the instanton-induced quark-antiquak interaction (Ⅲ). A good description of the mass spectrum is obtained. The respective role of Ⅲ and COGEP in the S-wave meson spectrum is discussed.
基金National Natural Science Foundation of China under Grant No 10475087
文摘The new members of the charm-strange family Dsj^*(2317), Dsj(2460), and Ds(2632), which have the surprising properties, are challenging the present models. Many theoretical interpretations have been devoted to this issue. Most authors suggest that they are not the conventional cs^- quark model states, but possibly are four-quark states, molecule states, or mixtures of a P-wave cs^- and a four-quark state. In this work, we follow the four-quark-state picture, and study the masses of cnn^-s^-/css^-s^- states (n is u or d quark) in the chiral SU(3) quark model. The numerical results show that the mass of the mixed four-quark state (cnn^-s^-/css^-s^-) with spin parity j^P : 0^+ might not be Ds (2632). At the same time, we also conclude that Dsj^*(2317) and Dsj(2460) cannot be explained as the pure four-quark state.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (No.2020B0301030008)the Natural Science Foundation of China (No.11935007)the Science and Technology Program of Guangzhou (No.2019050001).
文摘With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To calculate the transport coefficients we utilized the kinetic theory in the relaxation time approximation, where the momentum anisotropy is embedded in the estimation of both the distribution function and relaxation time. It was shown that an increase in the anisotropy parameterξmay result in a catalysis of chiral symmetry breaking. The critical endpoint(CEP) is shifted to lower temperatures and larger quark chemical potentials asξincreases, and the impact of momentum anisotropy on the CEP temperature is almost the same as that on the quark chemical potential of the CEP. The meson masses and the associated decay widths also exhibit a significant ξ dependence. It was observed that the temperature behavior of the scaled shear viscosity η/T~3 and scaled electrical conductivity σ/T exhibited a similar dip structure, with the minima of both η/T~3 and σ/T shifting toward higher temperatures with increasing ξ. Furthermore,we demonstrated that the Seebeck coefficient S decreases when the temperature rises and its sign is positive, indicating that the dominant carriers for converting the temperature gradient to the electric field are up-quarks. The Seebeck coefficient S is significantly enhanced with a largeξfor a temperature below the critical temperature.
文摘Purpose: The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants, including the quarks, are associated with partial harmonic fractional exponents, , of a fundamental frequency, v<sub>F</sub>. The model has shown that the properties of the quarks are based on a progression of prime number composites. They also fall on three separate power law lines related to integer factors of the Y-intercept, , of a fundamental electromagnetic line which is scaled by the Rydberg constant, R and Planck’s constant. The quark lines are scaled by the quantum number factors {1, 2, 3}, and their Y-intercepts are referred to as n<sub>bem</sub>. The goal is to present a new proto-quark model in a six-quark inverted triangular array that defines the global organization of the valence quarks, which determines the hadronic quantum numbers, the standard hadron quark model, and the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Methods: The charm, bottom, top quarks are associated with power law line Y-intercept, n<sub>bem</sub> equal to 1;the strange and down quarks with n<sub>bem</sub> equal to 2;and the up quark with n<sub>bem</sub> equal to 3. An inverted equilateral triangular array with three rows arranged from upper row (triangle base) to bottom row (triangle vertex), is associated respectively with n<sub>bem</sub> numbers 1, 2, and 3. The novelty of our perspective thus defines a new global valence quark organization which supersedes the Standard hadron composite quark model. The quarks are ordered via relative mass, partial fractions, and n<sub>bem</sub> quantum number. The top row of our inverted triangle includes the c, b, and t quarks from left to right;the middle row depicts the d and s quarks;and the bottom row, the up quark. Results: Our array depicts a quantum generator of the global organization of the valence quarks defining the composite quark model. The vertices of the triangular array are the up quarks, the midpoints are the down quarks. All weak transitions are from a corner to a midpoint or vice versa. The standard 3 by 3 CKM matrix is generated from the new quark triangle with each up type quark (u, c, and t) transforming to each down type (d, s, and b), with their experimental flavor transition magnitudes given. Conclusion: A new quark quantum number, n<sub>bem</sub>, is an important discovery that generates a new proto-valence quark triangle that secondarily generates the composite quark model and the CKM matrix.
基金Supported by the National Natural Science Foundation of China under Grant No.19675018.
文摘Starting from quantum chromodynamics,we find that aside from some terms that contribute only via the mixing of different Fock components,the baryon magnetic moment can be expressed as μB=[∑_(q)Q_(q)/(2<k0>_(q))](2S_(q)-2S_(q)+L_(q)-L_(q)),where<k0>q is the q flavor quarks average relativistic energy inside the baryon,and S_(q),L_(q),S_(q),L_(q) are quark and antiquark's relativistic spin and orbital contributions to baryon spin.We demonstrate that within an error of 1/6,this expression can be parameterized as ∑_(q)[Q_(q)/(2m^(eff)_(q))](2s_(q)-2s_(q)),(where s is the nonrelativistic Pauli spin contribution and m^(eff)_(q) is of the order of the constituent quark mass)which is just what the nonrelativistic constituent quark model adopts to give a good account of octet baryon magnetic moments.
基金The project supported by National Natural Science Foundation of China
文摘The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.
文摘For studying the anisotropie strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropie pressure plus an additional Gaussian term with three free parameters (A, μ and X). According to recent observations, a pulsar in a mass range of 1.97±0.04M has been measured. Hence, we take this opportunity to set the free parameters of our model. We fix X by applying boundary and stability conditions and then search the A - μ parameter space For a maximum mass range of 1.9M 〈 Mmax 〈 2.1M. Our results indicate that anisotropy increases the maximum mass M and also its corresponding radius R for a typical strange quark star. Furthermore, our model shows magnetic field and electric charge increase the anisotropy factor △. In fact, △ has a maximum on the surface and this maximum goes up in the presence of magnetic field and electric charge. Finally, we show that anisotropy can be more effective than either magnetic field or electric charge in raising maximum mass of strange quark stars.
文摘The ratio between the anomalous magnetic moments of proton and neutron has recently been suggested to be connected to the ratio of proton momentum fractions carried by the valence quarks inside it. This moment fraction ratio is respectively evaluated by using constituent quark model and chiral quark model in order to check meson cloud effect. Our results show that the meson cloud effect is remarkable to the ratio of the proton momentum fractions, and therefore, this ratiois a sensitive test for the meson cloud effect as well as for the SU(6) symmetry breaking effect.
基金Supported by the National Natural Science Foundation of China.
文摘The nuclear gluon distribution is predicted using the constituent quark model.We point out that the nuclear shadowing and andsliadowing depress nuclear gluon field when x<0.08 and enhance it when 0.08<x<0.2.
基金Supported in part by National Science Foundation of China and by the Foundation of State Education Commission of China.
文摘By means of the Matsubara Green’s function method,we investigate the temperature dependence of coupling constant gqqa in soliton bag model.We find Sqqo will decrease as temperature increases in high temperature region and will approach zero at critical temperature T_(c).The quark deconfinement phase transition in soliton bag model is discussed.
文摘Pion cloud effects on △-N mass splitting are studied based on quark models. Pseudo-scalar pion-quarkcoupling is discussed in the relativistic and nonrelativistic frameworks. We separately calculate the pion cloud effects bythe one-pion exchange potential and by another method which is consistent with the baryon chiral perturbation theory.Remark able discrepancy in the mass splitting between the two methods is shown.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.19775051 and B15,and the Chinese Academy of Sciences under Grant Nos.B78 and B80.
文摘The binding energy of the six quark system with strangeness s=-5 is investigated by the SU(3)chiral constituent quark model.The single ■^(*)Ω channel calculation with spin S=Q and the coupled ■Ω-■^(*)Ω channel calculation with spin S=1 are considered.It is shown that in the spin S=0 case,the binding energy of ■^(*)Ω is ranged from 80.0 to 92.4MeV,while in the S=1 case,the additional ■^(*)Ω channel increases the binding energy of ■Ω to a range of 26.2-32.9 MgV.
文摘The quark potential model is extended to include the sea quark excitation using the random phase approximation. The effective quark interaction preserves the important QCD properties — chiral symmetry and confinement simultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence quark pair such as the ρ meson can also be described in this extended quark potential model.