The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived ...The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived if the subsystems are solving exactly.Firstly,in theis paper,we deal with an extension of the waveform relaxation algorithm by us ing multisplittin AOR method based on an overlapping block decomposition. We restricted our selves to equidistant timepoints and dealed with the case that an implicit integration method was used to solve the subsystems numerically in parallel. Then we have proved convergence of multi splitting AOR waveform relaxation algorithm on a fixed window containing a finite number of timepoints.展开更多
In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve t...In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve the iterative convergence. And the matrix equations are solved using the multifrontal algorithm. The resulting CPU time is greatly reduced.Finally, a number of numerical examples are given to illustrate its accuracy and efficiency.展开更多
In this paper,we establish a new algorithm to the non-overlapping Schwarz domain decomposition methods with changing transmission conditions for solving one dimensional advection reaction diffusion problem.More precis...In this paper,we establish a new algorithm to the non-overlapping Schwarz domain decomposition methods with changing transmission conditions for solving one dimensional advection reaction diffusion problem.More precisely,we first describe the new algorithm and prove the convergence results under several natural assumptions on the sequences of parameters which determine the transmission conditions.Then we give a simple method to estimate the new value of parameters in each iteration.The interesting advantage of our method is that one may update the better parameters in each iteration to save the computational cost for optimizing the parameters after many steps.Finally some numerical experiments are performed to show the behavior of the convergence rate for the new method.展开更多
By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved...By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.展开更多
A new approach to image segmentation is presented using a variation framework. Re-garding the edge points as interpolating points and minimizing an energy functional to interpolate a smooth threshold surface it carrie...A new approach to image segmentation is presented using a variation framework. Re-garding the edge points as interpolating points and minimizing an energy functional to interpolate a smooth threshold surface it carries out the image segmentation. In order to preserve the edge informa-tion of the original image in the threshold surface, without unduly sharping the edge of the image, a non-convex energy functional is adopted. A relaxation algorithm with the property of global conver-gence, for solving the optimization problem, is proposed by introducing a binary energy. As a result the non-convex optimization problem is transformed into a series of convex optimization problems, and the problem of slow convergence or nonconvergence is solved. The presented method is also tested experimentally. Finally the method of determining the parameters in optimizing is also explored.展开更多
文摘The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived if the subsystems are solving exactly.Firstly,in theis paper,we deal with an extension of the waveform relaxation algorithm by us ing multisplittin AOR method based on an overlapping block decomposition. We restricted our selves to equidistant timepoints and dealed with the case that an implicit integration method was used to solve the subsystems numerically in parallel. Then we have proved convergence of multi splitting AOR waveform relaxation algorithm on a fixed window containing a finite number of timepoints.
文摘In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve the iterative convergence. And the matrix equations are solved using the multifrontal algorithm. The resulting CPU time is greatly reduced.Finally, a number of numerical examples are given to illustrate its accuracy and efficiency.
文摘In this paper,we establish a new algorithm to the non-overlapping Schwarz domain decomposition methods with changing transmission conditions for solving one dimensional advection reaction diffusion problem.More precisely,we first describe the new algorithm and prove the convergence results under several natural assumptions on the sequences of parameters which determine the transmission conditions.Then we give a simple method to estimate the new value of parameters in each iteration.The interesting advantage of our method is that one may update the better parameters in each iteration to save the computational cost for optimizing the parameters after many steps.Finally some numerical experiments are performed to show the behavior of the convergence rate for the new method.
基金The project supported by the Basic Research on Frontier Problems in Fluid and Aerodynamics in Chinathe National Natural Science Foundation of China (19772069)
文摘By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.
基金This research was partially supported by the National Natural Science Foundation of China (Grant No. 69735010).
文摘A new approach to image segmentation is presented using a variation framework. Re-garding the edge points as interpolating points and minimizing an energy functional to interpolate a smooth threshold surface it carries out the image segmentation. In order to preserve the edge informa-tion of the original image in the threshold surface, without unduly sharping the edge of the image, a non-convex energy functional is adopted. A relaxation algorithm with the property of global conver-gence, for solving the optimization problem, is proposed by introducing a binary energy. As a result the non-convex optimization problem is transformed into a series of convex optimization problems, and the problem of slow convergence or nonconvergence is solved. The presented method is also tested experimentally. Finally the method of determining the parameters in optimizing is also explored.