Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterativ...Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.展开更多
This paper is concerned with a class of convex multivariable nonlinear program problems. By virtue of linearization philosophy, a linearization problem (LP) is constructed and theoretical equivalence between (LP) and ...This paper is concerned with a class of convex multivariable nonlinear program problems. By virtue of linearization philosophy, a linearization problem (LP) is constructed and theoretical equivalence between (LP) and the original problem established. Based on relaxation techniques an algorithm for solving (LP) is proposed, which is efficient from a computational viewpoint, since at each iteration the only program that needs to solve is a standard linear program. Furthermore, the optimality criterion is derived. The convergence analysis conducted in this paper indicates that the algorithm guarantees finite ε convergence.展开更多
In this paper, we present continuous iteratively reweighted least squares algorithm (CIRLS) for solving the linear models problem by convex relaxation, and prove the convergence of this algorithm. Under some condition...In this paper, we present continuous iteratively reweighted least squares algorithm (CIRLS) for solving the linear models problem by convex relaxation, and prove the convergence of this algorithm. Under some conditions, we give an error bound for the algorithm. In addition, the numerical result shows the efficiency of the algorithm.展开更多
Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is diffi...Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is difficult to be calculated directly asa function of different oceanographic and meteorological parameters.Previous researches were mainly based on experimentalmeasurements or parameterization.In this paper,a method based on the liner array charge-coupled device(CCD)is proposed tomeasure the relaxation rate of the water surface wave.Compared with the traditional methods?it can obtain the information ofsurface wave and current synchronously,and works well under a multi wind-wave environment.Wind wav^tank experimentswere carried out based on this method.The good consistency between the results calculated by this method and the traditionalrelaxation rate models shows the validity of the proposed method.This method can be further used to study the modulation theoryof surface waves by currents.展开更多
The experiments reveal the characteristics of stable damping in a multiphasic Al-Zn eutectoid alloy:(1)Thewhole damping(Q<sup>-1</sup>)has the same dependence on measured frequency(f),i.e.Q<sup>-...The experiments reveal the characteristics of stable damping in a multiphasic Al-Zn eutectoid alloy:(1)Thewhole damping(Q<sup>-1</sup>)has the same dependence on measured frequency(f),i.e.Q<sup>-1</sup>ocf<sup>-n</sup>,where n is a parameterand is independent of temperature.(2)In a low-temperature(low-T)and low-strain-amplitude(low-A<sub>)</sub>region,Q<sup>-1</sup>=(B/)exp(-nH/kT),where B is a parameter,H the atomic diffusion activation energy,k Boltzmann′sconstant,and T the absolute temperature.n,H<sub>o</sub>(=nH)and H are all independent of A<sub>.</sub>The damping comesfrom an anelastic motion of the phase-interface.(3)In an intermediate region including a low-Tand a high-A<sub>,</sub>a middle-T and middle A<sub> </sub>and a high-T and low-A<sub> </sub>regions,the equation Q<sup>-1</sup>=(C/f<sup>n</sup>)exp(nH/kT)stillholds,but the damping has a normal amplitude effect C,n,and H all vary with A<sub>;</sub>the damping results from anonlinear relaxation of phase-interface.(4)In a high-T and high-A<sub> </sub>region,there is no longer a linear relationship between InQ<sup>-1</sup> and T<sup>-1</sup>,whereas the relation Q<sup>-1</sup>f<sup>-n</sup> is still satisfied,where n increases as A<sub> </sub>increases,andthe damping has a normal amplitude effect but one which is weaker than that in the case(3).The damping maybe attributed to another kind of nonlinear relaxation between phase-interfaces.展开更多
Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not ...Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.展开更多
In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and giv...In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and give several sufficient conditions ensuring it to converge as well as diverge. At last, we conclude a necessary and sufficient condition for the convergence of this framework when the coefficient matrix is an L-matrix.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
Many problems in science and engineering require solving large consistent linear systems. This paper presents a relaxed greedy block Kaczmarz method (RGBK) and an accelerated greedy block Kaczmarz method (AGBK) for so...Many problems in science and engineering require solving large consistent linear systems. This paper presents a relaxed greedy block Kaczmarz method (RGBK) and an accelerated greedy block Kaczmarz method (AGBK) for solving large-size consistent linear systems. The RGBK algorithm extends the greedy block Kaczmarz algorithm (GBK) presented by Niu and Zheng in <a href="#ref1">[1]</a> by introducing a relaxation parameter to the iteration formulation of GBK, and the AGBK algorithm uses different iterative update rules to minimize the running time. The convergence of the RGBK is proved and a method to determine an optimal parameter is provided. Several examples are presented to show the effectiveness of the proposed methods for overdetermined and underdetermined consistent linear systems with dense and sparse coefficient matrix.展开更多
In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programmi...In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.展开更多
This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by util...This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by utilizing the method,we can convert the initial generalized linear fractional programming problem and its subproblems into a series of linear programming relaxation problems.Based on the branch-and-bound framework and linear programming relaxation problems,a branch-and-bound algorithm is presented for globally solving the generalized linear fractional programming problem,and the computational complexity of the algorithm is given.Finally,numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.展开更多
This paper is concerned with the design of a memory state feedback controller for linear systems with interval time-varying delays.The time delay is assumed to be a time-varying continuous function belonging to a give...This paper is concerned with the design of a memory state feedback controller for linear systems with interval time-varying delays.The time delay is assumed to be a time-varying continuous function belonging to a given interval,which means that the lower and upper bounds of time-varying delay are available.First,a less conservative delay-range-dependent stability criteria is proposed by using a new interval fraction method.In the process of controller synthesis,the history information of system is considered in the controller design by introducing the lower delay state.Moreover,the usual memoryless state feedback controller for the underlying systems could be considered as a special case of the memory case.Finally,two numerical examples are given to show the effectiveness of the proposed method.展开更多
The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex ...The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex nonlinear behavior, due to the blending of various materials with different quality properties.In this work, a global optimization algorithm is proposed to solve a previously published continuous-timemixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-zation, the distribution problem, and several important operational features and constraints. The algorithmemploys piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of oneof the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates ofthe global solution. The algorithm is compared to two commercial global solvers and two heuristic methodsby solving four examples from the literature. Results show that the proposed global optimization algorithmperforms on par with commercial solvers but is not as fast as heuristic approaches.展开更多
This paper mainly proposes a new C-XSC (C- for eXtended Scientific Computing) software for the symmetric single step method and relaxation method for computing an enclosure for the solution set and compares the meth...This paper mainly proposes a new C-XSC (C- for eXtended Scientific Computing) software for the symmetric single step method and relaxation method for computing an enclosure for the solution set and compares the methods with others' and then makes some modifications and finally, examples illustrating the applicability of the proposed methods are given.展开更多
基金Supported by the National Natural Science Foundation of China(61272300)
文摘Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.
文摘This paper is concerned with a class of convex multivariable nonlinear program problems. By virtue of linearization philosophy, a linearization problem (LP) is constructed and theoretical equivalence between (LP) and the original problem established. Based on relaxation techniques an algorithm for solving (LP) is proposed, which is efficient from a computational viewpoint, since at each iteration the only program that needs to solve is a standard linear program. Furthermore, the optimality criterion is derived. The convergence analysis conducted in this paper indicates that the algorithm guarantees finite ε convergence.
文摘In this paper, we present continuous iteratively reweighted least squares algorithm (CIRLS) for solving the linear models problem by convex relaxation, and prove the convergence of this algorithm. Under some conditions, we give an error bound for the algorithm. In addition, the numerical result shows the efficiency of the algorithm.
基金National Natural Science Foundation of China(No.41276185)
文摘Relaxation rate is a very crucial parameter in physics.For the water surface wave,its relaxation rate is directly relevantto the response time of disturbed spectrum returning back to its quasi-steady state.It is difficult to be calculated directly asa function of different oceanographic and meteorological parameters.Previous researches were mainly based on experimentalmeasurements or parameterization.In this paper,a method based on the liner array charge-coupled device(CCD)is proposed tomeasure the relaxation rate of the water surface wave.Compared with the traditional methods?it can obtain the information ofsurface wave and current synchronously,and works well under a multi wind-wave environment.Wind wav^tank experimentswere carried out based on this method.The good consistency between the results calculated by this method and the traditionalrelaxation rate models shows the validity of the proposed method.This method can be further used to study the modulation theoryof surface waves by currents.
文摘The experiments reveal the characteristics of stable damping in a multiphasic Al-Zn eutectoid alloy:(1)Thewhole damping(Q<sup>-1</sup>)has the same dependence on measured frequency(f),i.e.Q<sup>-1</sup>ocf<sup>-n</sup>,where n is a parameterand is independent of temperature.(2)In a low-temperature(low-T)and low-strain-amplitude(low-A<sub>)</sub>region,Q<sup>-1</sup>=(B/)exp(-nH/kT),where B is a parameter,H the atomic diffusion activation energy,k Boltzmann′sconstant,and T the absolute temperature.n,H<sub>o</sub>(=nH)and H are all independent of A<sub>.</sub>The damping comesfrom an anelastic motion of the phase-interface.(3)In an intermediate region including a low-Tand a high-A<sub>,</sub>a middle-T and middle A<sub> </sub>and a high-T and low-A<sub> </sub>regions,the equation Q<sup>-1</sup>=(C/f<sup>n</sup>)exp(nH/kT)stillholds,but the damping has a normal amplitude effect C,n,and H all vary with A<sub>;</sub>the damping results from anonlinear relaxation of phase-interface.(4)In a high-T and high-A<sub> </sub>region,there is no longer a linear relationship between InQ<sup>-1</sup> and T<sup>-1</sup>,whereas the relation Q<sup>-1</sup>f<sup>-n</sup> is still satisfied,where n increases as A<sub> </sub>increases,andthe damping has a normal amplitude effect but one which is weaker than that in the case(3).The damping maybe attributed to another kind of nonlinear relaxation between phase-interfaces.
文摘Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.
基金Supported by Natural Science Fundations of China and Shanghai.
文摘In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and give several sufficient conditions ensuring it to converge as well as diverge. At last, we conclude a necessary and sufficient condition for the convergence of this framework when the coefficient matrix is an L-matrix.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
文摘Many problems in science and engineering require solving large consistent linear systems. This paper presents a relaxed greedy block Kaczmarz method (RGBK) and an accelerated greedy block Kaczmarz method (AGBK) for solving large-size consistent linear systems. The RGBK algorithm extends the greedy block Kaczmarz algorithm (GBK) presented by Niu and Zheng in <a href="#ref1">[1]</a> by introducing a relaxation parameter to the iteration formulation of GBK, and the AGBK algorithm uses different iterative update rules to minimize the running time. The convergence of the RGBK is proved and a method to determine an optimal parameter is provided. Several examples are presented to show the effectiveness of the proposed methods for overdetermined and underdetermined consistent linear systems with dense and sparse coefficient matrix.
文摘In this work we propose a solution method based on Lagrange relaxation for discrete-continuous bi-level problems, with binary variables in the leading problem, considering the optimistic approach in bi-level programming. For the application of the method, the two-level problem is reformulated using the Karush-Kuhn-Tucker conditions. The resulting model is linearized taking advantage of the structure of the leading problem. Using a Lagrange relaxation algorithm, it is possible to find a global solution efficiently. The algorithm was tested to show how it performs.
基金the National Natural Science Foundation of China(Nos.11871196,12071133 and 12071112)the China Postdoctoral Science Foundation(No.2017M622340)+1 种基金the Key Scientific and Technological Research Projects of Henan Province(Nos.202102210147 and 192102210114)the Science and Technology Climbing Program of Henan Institute of Science and Technology(No.2018JY01).
文摘This paper presents an efficient algorithm for globally solving a generalized linear fractional programming problem.For establishing this algorithm,we firstly construct a two-level linear relaxation method,and by utilizing the method,we can convert the initial generalized linear fractional programming problem and its subproblems into a series of linear programming relaxation problems.Based on the branch-and-bound framework and linear programming relaxation problems,a branch-and-bound algorithm is presented for globally solving the generalized linear fractional programming problem,and the computational complexity of the algorithm is given.Finally,numerical experimental results demonstrate the feasibility and efficiency of the proposed algorithm.
基金supported by the 111 Project(No.B08015)the National Natural Science Foundation of China(No.60534010,60572070,60774048,60728307)the Program for Changjiang Scholars and Innovative Research Groups of China(No.60521003)
文摘This paper is concerned with the design of a memory state feedback controller for linear systems with interval time-varying delays.The time delay is assumed to be a time-varying continuous function belonging to a given interval,which means that the lower and upper bounds of time-varying delay are available.First,a less conservative delay-range-dependent stability criteria is proposed by using a new interval fraction method.In the process of controller synthesis,the history information of system is considered in the controller design by introducing the lower delay state.Moreover,the usual memoryless state feedback controller for the underlying systems could be considered as a special case of the memory case.Finally,two numerical examples are given to show the effectiveness of the proposed method.
基金Support by Ontario Research FoundationMc Master Advanced Control ConsortiumFundacao para a Ciência e Tecnologia(Investigador FCT 2013 program and project UID/MAT/04561/2013)
文摘The scheduling of gasoline-blending operations is an important problem in the oil refining industry. Thisproblem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but alsonon-convex nonlinear behavior, due to the blending of various materials with different quality properties.In this work, a global optimization algorithm is proposed to solve a previously published continuous-timemixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimi-zation, the distribution problem, and several important operational features and constraints. The algorithmemploys piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation tech-nique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of oneof the variables in a bilinear term and generate convex relaxations for each partition. By increasing the num-ber of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates ofthe global solution. The algorithm is compared to two commercial global solvers and two heuristic methodsby solving four examples from the literature. Results show that the proposed global optimization algorithmperforms on par with commercial solvers but is not as fast as heuristic approaches.
文摘This paper mainly proposes a new C-XSC (C- for eXtended Scientific Computing) software for the symmetric single step method and relaxation method for computing an enclosure for the solution set and compares the methods with others' and then makes some modifications and finally, examples illustrating the applicability of the proposed methods are given.