The Ginzburg-Landau theory on ferroelectrics with random field induced by dipole defects is studied by using Monte Carlo simulation, in order to investigate the dipole configuration and the dielectric relaxation of re...The Ginzburg-Landau theory on ferroelectrics with random field induced by dipole defects is studied by using Monte Carlo simulation, in order to investigate the dipole configuration and the dielectric relaxation of relaxor ferro-electrics. With the increase of random field, the dipole configuration evolves from the long-range ferroelectric order into the coexistence of short-range dipole-clusters and less polarized matrix. The dipole-cluster phase above the transition temperature and superparaelectric fluctuations far below this temperature are identified for the relaxor ferroelectrics. We investigate the frequency dispersion and the time-domain spectrum of the dielectric relaxation, demonstrating the Vogel-Fulcher relationship and the multi-peaked time-domain distribution of the dielectric relaxation.展开更多
The dielectric response of complex perovskite relaxor ferrolectrics Pb(Mg1/3Nb2/3) O3 with respect to temperature and frequency was carefully measured. Using a normalized method of the 'universal' many-body t...The dielectric response of complex perovskite relaxor ferrolectrics Pb(Mg1/3Nb2/3) O3 with respect to temperature and frequency was carefully measured. Using a normalized method of the 'universal' many-body theory, the relaxation process was analyzed around the temperature of dielectric absorption maximum. There is no structural phase transition near this temperature and the behavior is closely like that of a polar dipole medium. The functional relationship about frequency and temperature of dielectric pormittivity maximum was also fitted to discuss the dynamic behavior of polar microregion. It is confirmed that a new power exponential Arrhenius relation is better to characterize the relaxation behavior than the Vogel-Fulcher and Debye relations. Based on the polarization theory of polar dipoles, we analyzed the relaxation mechanism of ferroelectric microdomains of relaxor ferroelectrics, and get an ideal distribution function of relaxation time. Consequently, a simulated dielectric response dependence on temperature and frequencies can be expressed, which is well coincided with experiment results.展开更多
Next-generation advanced high/pulsed power capacitors urgently require dielectric materials with outstanding energy storage performance.Bi_(0.5)Na_(0.5)TiO_(3)-based lead-free materials exhibit high polarization,but t...Next-generation advanced high/pulsed power capacitors urgently require dielectric materials with outstanding energy storage performance.Bi_(0.5)Na_(0.5)TiO_(3)-based lead-free materials exhibit high polarization,but the high remanent polarization and large polarization hysteresis limit their applications in dielectric capacitors.Herein,high-entropy perovskite relaxor ferroelectrics(Na_(0.2)Bi_(0.2)Ba_(0.2)Sr_(0.2)Ca_(0.2))(Ti1-x%Zrx%)O_(3)are designed by adding multiple ions in the A-site and replacing the B-site Ti^(4+)with a certain amount of Zr^(4+).The newly designed system showed high relaxor feature and slim polarization-electric(P-E)loops.Especially,improved relaxor feature and obviously delayed polarization saturation were found with the increasing of Zr^(4+).Of particular importance is that both high recoverable energy storage density of 6.6 J/cm^(3) and energy efficiency of 93.5%were achieved under 550 kV/cm for the ceramics of x=6,accompanying with excellent frequency stability,appreciable thermal stability,and prosperous discharge property.This work not only provides potential dielectric materials for energy storage applications,but also offers an effective strategy to obtain dielectric ceramics with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.展开更多
In this review the dielectric properties of relaxor ferroelectrics are discussed and compared withthe properties of normal dielectrics and ferroelectrics. We try to draw a general picture ofdielectric relaxation start...In this review the dielectric properties of relaxor ferroelectrics are discussed and compared withthe properties of normal dielectrics and ferroelectrics. We try to draw a general picture ofdielectric relaxation starting from a textbook review of the underlying concepts and pay attentionto common behavior of relaxors rather than to the features observed in specific materials. We hopethat this general approach is beneficial to those physicists, chemists, material scientists and deviceengineers who deal with relaxors. Based on the analysis of dielectric properties, a comprehensivedefinition of relaxors is proposed: relaxors are defined as ferroelectrics in which the maximum inthe temperature dependence of static susceptibility occurs within the temperature range ofdielectric relaxation, but does not coincide with the temperature of singularity of relaxation timeor soft mode frequency.展开更多
Relaxor ferroelectrics have been extensively studied due to their outstanding dielectric,piezoelectric,energy storage,and electro-optical properties.Although various theories were proposed to elaborate on the relaxati...Relaxor ferroelectrics have been extensively studied due to their outstanding dielectric,piezoelectric,energy storage,and electro-optical properties.Although various theories were proposed to elaborate on the relaxation phenomena,polar nanoregions formed by disruption of the long-range-order structures are considered to play a key role in relaxor ferroelectrics.Generally,relaxor ferro-electrics are formed by aliovalent substitution or isovalent substitution in normal ferroelectrics,or further combinations of solid solutions.Herein,one category of BaTiO_(3)-based relaxor ferroelectrics with abnormal phase transition and polarization mismatch phenomena is focused.Characteristic parameters of such BaTiO_(3)-based relaxor ferroelectrics,including the Curie temperature,polarization,and lattice parameter,show a typical“U”-shaped variation with compositions.The studied BaTiO_(3)-based relaxor ferroelectrics are mostly solid solutions of A-site coupling and B-site coupling ferroelectrics,exhibiting polarization mismatch in certain compositions[e.g.,0.9BaTiO_(3)-0.1BiScO_(3),0.8BaTiO_(3)-0.2Bi(Mg_(1/2)Ti_(1/2)O_(3),0.8BaTiO_(3)-0.2Bi(Mg_(2/3)Nb_(1/3)O_(3),0.5BaTiO_(3)-0.5Pb(Mg_(1/3)Nb_(2/3)O_(3),0.4BaTiO_(3)-0.6Pb(Zn_(1/3)Nb_(2/3)O_(30,etc.].Of particular interest is that excellent electrical properties can be achieved in the studied relaxor ferroelectrics.Therefore,polarization mismatch theory can also provide guidance for the design of new high-performance lead-free relaxor ferroelectrics.展开更多
An overview is presented on the order-disorder structural transitions and the dielectric mechanism in the complex-perovskite type relaxor ferroelectrics, i.e., the relaxors. Emphasis is put on the theoretical understa...An overview is presented on the order-disorder structural transitions and the dielectric mechanism in the complex-perovskite type relaxor ferroelectrics, i.e., the relaxors. Emphasis is put on the theoretical understanding of the structural transitions, the macroscopic dielectric properties, and the relationship between them. The influences of the composition, the temperature, and the atomic interactions on the order-disorder microstructures can be well understood in the cluster-variation-method calculations. The criterion drawn from theoretical analysis is successful in predicting the order-disorder structure of relaxors. Among various physical models about relaxors, the dipole glassy model that described the dielectric response as the thermally activated flips of the local spontaneous polarization under random interactions is discussed in details. The Monte Carlo simulation results of this model are consistent with the linear and nonlinear experiments of relaxors.展开更多
Ultrafast charge/discharge process and ultrahigh power density enable dielectrics essential components in modern electrical and electronic devices, especially in pulse power systems. However, in recent years, the ener...Ultrafast charge/discharge process and ultrahigh power density enable dielectrics essential components in modern electrical and electronic devices, especially in pulse power systems. However, in recent years, the energy storage performances of present dielectrics are increasingly unable to satisfy the growing demand for miniaturization and integration, which stimulates further researches on dielectrics with higher energy density and efficiency.Among various inorganic dielectrics, perovskite relaxor ferroelectrics are recognized as promising candidates for energy storage applications, with high permittivity and relatively high efficiency. Here, we focus on recent progress and achievements on optimizing perovskite relaxor ferroelectrics toward better energy storage capability through hierarchical design. The principles and key parameters of dielectric energy storage, together with the definition of majority types of dielectrics, are introduced at first. Strategies within various scales include domain, grain size, orientation, and composite engineering are summarized. The existing challenges are presented and future prospects are proposed in the end, with the background of both academic explorations and industrial applications.展开更多
(1-x)(0.8Bi_(1/2)Na_(1/2)TiO3-0.2Bi_(1/2)K_(1/2)TiO3)-xBi(Ni_(2/3)Nb_(1/3))O3(BNKT-xBNN)solid solution ceramics were fabricated by high temperature solid-state reaction method.All the compositions possess relaxor ferr...(1-x)(0.8Bi_(1/2)Na_(1/2)TiO3-0.2Bi_(1/2)K_(1/2)TiO3)-xBi(Ni_(2/3)Nb_(1/3))O3(BNKT-xBNN)solid solution ceramics were fabricated by high temperature solid-state reaction method.All the compositions possess relaxor ferroelectric features,among which the ergodic BNKT-0.02BNN exhibits large repeatable electrostrain value Suni¼0.51%at electric field of 65 kV/cm,with high piezoelectric stain coefficient d33*of 890 pm/V at 45 kV/cm,while the non-ergodic compositions present unrepeatable large strain response.Based on the electric field-composition phase diagram,the repeatability of strain response in ergodic compositions can be attributed to the reversible electric-field-induced phase transition.In addition,the effects of BNN contents on the macroscopic strain properties are explored by analyzing the existing states of the polar regions with corresponding thermal evolutions and electric-field-induced phase transitions.This research is expected to guide the design of lead free relaxor ferroelectric materials with desired electrostrain properties.展开更多
Organic and inorganic relaxor ferroelectrics used for electrocaloric effect(ECE)applications areintroduced.Relaxor ferroelectrics offer several advantages for ECE devices,e.g.,infinite stateswithout applying electric ...Organic and inorganic relaxor ferroelectrics used for electrocaloric effect(ECE)applications areintroduced.Relaxor ferroelectrics offer several advantages for ECE devices,e.g.,infinite stateswithout applying electric field,field-induced large polarization,no-hysteresis ofheating and cooling,small-hysteresis polarization loss,room temperature phase transition,and broad temperaturerange.The ECE in relaxor ferroelectrics under a high electric field can be described using a theorysimilar to that for first-order phase transition materials.Large ECE was observed directly inhigh-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)68/32 mol%copolymers,P(VDF-TrFE-CFE)(CFE-chlorofluoroethylene)59.2/33.6/7.2 mol%terpolymers,P(vDF-TrFE-CFE)-P(VDF-CTFE)(CTFE-chlorotrifluoroethylene)95/5 wt%terpolymer blended films,and(PbLa)(ZrTi)O_(3)(PLZT)ceramic thin films.ECE reported inPb(Sc_(1/2)Ta_(1/2))O_(3)(PST),Pb(Mg_(1/3)Nb_(2/3))O_(3)-PbTiO_(3)(PMN-PT)thin films is also summarized.Finally,the perspective of ECE devices is llustrated.展开更多
For efficient solid-state refrigeration technologies based on electrocaloric effect(ECE),it is a great challenge of simultaneously obtaining a large adiabatic temperature change(DT)within a wide temperature span(Tspan...For efficient solid-state refrigeration technologies based on electrocaloric effect(ECE),it is a great challenge of simultaneously obtaining a large adiabatic temperature change(DT)within a wide temperature span(Tspan)in lead-free ferroelectric ceramics.Here,we studied the electrocaloric effect(ECE)in(1-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xCaTiO_(3)((1-x)NBT-xCT)and explored the combining effect of morphotropic phase boundary(MPB)and relaxor feature.The addition of CT not only constructs a MPB region with the coexistence of rhombohedral and orthorhombic phases,but also enhances the relaxor feature.The ECE peak appears around the freezing temperature(Tf),and shifts toward to lower temperature with the increasing CT amount.The directly measured ECE result shows that the ceramic of x=0.10,which is in the MPB region,has an optimal ECE property of DTmax=1.28 K@60℃under 60 kV/cm with a wide Tspan of 65C.The enhanced ECE originates from the electric-field-induced transition between more types of polar nanoregions and long-range ferroelectric macrodomains.For the composition with more relaxor feature in the MPB region,such as x?0.12,the ECE is relatively weak under low electric fields but it exhibits a sharp increment under a sufficiently high electric field.This work provides a guideline to develop the solidestate cooling devices for electronic components.展开更多
Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achie...Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy,named high-entropy strategy,realizing nearly ten times growth of energy storage density compared with low-entropy material.Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time.The achievement of excellent energy storage properties should be attributed to the enhanced random field,decreased nanodomain size,strong multiple local distortions,and improved breakdown field.Furthermore,the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized.The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics,promoting the development of advanced capacitors.展开更多
The environmentally-friendly(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(x=0,0.02,0.04,0.06,0.08)relaxor ferroelectric ceramics were prepared by the conventional solid-state method and sintered in air at 1...The environmentally-friendly(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(x=0,0.02,0.04,0.06,0.08)relaxor ferroelectric ceramics were prepared by the conventional solid-state method and sintered in air at 1400°C for 2 h.SEM and XRD analyses were utilized to study the surface morphologies and the crystalline structures,respectively.The effects of BaMg_(0.1)Ta_(0.9))O_(3)on the phase transformation,dielectric and ferroelectric properties of Ba(Zr_(1/3)Ti_(2/3))O_(3)ceramics were also investigated.It is found that the average grain size of(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(BZT-BMT)perovskite single-phase ceramics decreases as the content of BaMg_(0.1)Ta_(0.9))O_(3)(BMT)increases.The relaxor ferroelectric behavior with diffuse phase transition and well-defined frequency dispersion of dielectric maximum temperature is found for the ceramic with increasing x values.0.98BZT-0.02BMT ceramic shows very good dielectric properties with the relative permittivity and the dielectric loss,measured at 100 k Hz as 6034 and 0.01399 respectively at room temperature.Both remnant polarization and coercive field decreased with increasing BMT content,indicating a transition from the ferroelectric phase to the paraelectric phase at room temperature.展开更多
The microstructure,dielectric and ferroelectric properties of(1-y)Ba(Zr0.1Ti0.9)O3-yBa(Zn1/3Nb2/3)O3(y=0-0.05)ceramics prepared by traditional solid state method were investigated by X-ray diffractometer,scanning elec...The microstructure,dielectric and ferroelectric properties of(1-y)Ba(Zr0.1Ti0.9)O3-yBa(Zn1/3Nb2/3)O3(y=0-0.05)ceramics prepared by traditional solid state method were investigated by X-ray diffractometer,scanning electron microscope,electric parameter testing system and ferroelectric tester.It is found that the barium zirconate titanate based ceramics are single-phase perovskites as y increases up to 0.05 and their average grain size decreases with the increase of y.The permittivity maximumεr,max is suppressed from 8948 to 1611 at 1 kHz with increasing y,and the ferroelectric-paraelectric phase transition temperature Tm decreases from 93 to-89℃at 1 kHz as y increases.The composition-induced diffuse phase transition is enhanced with increasingy.The relaxor-like ferroelectric behavior with a strong frequency dispersion of Tm and permittivity at T<Tm accompanied by a strong diffuse phase transition is found for the system with high y value.The remnant polarization decreases with increasing y,while the coercive field decreases remarkably and then increases with the increase of y.展开更多
The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystora...The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.展开更多
The increase in energy consumption and its collateral damage on the environment has encouraged the development of environment-friendly ceramic materials with good energy storage properties.In this work,(1-x)Na_(0.5)Bi...The increase in energy consumption and its collateral damage on the environment has encouraged the development of environment-friendly ceramic materials with good energy storage properties.In this work,(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3) ceramics were synthesized by the solid-state reaction method.The 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramic exhibited a high recoverable energy storage density of 8.1 J/cm3 and energy storage efficiency of 82.4% at 550 kV/cm.The introduction of Ca(Mg_(1/3)Nb_(2/3))O_(3) reduced the grain size and increased the band gap,thereby enhancing the breakdown field strength of the ceramic materials.The method also resulted in good temperature stability(20–140℃),frequency stability(1–200 Hz),and fatigue stability over 10^(6) cycles.In addition,an ultrahigh power density of 187 MW/cm^(3) and a fast charge-discharge rate(t_(0.9)=57.2 ns)can be obtained simultaneously.Finite element method analysis revealed that the decrease of grain size was beneficial to the increase of breakdown field strength.Therefore,the 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramics resulted in high energy storage properties with good stability and were promising environment-friendly materials for advanced pulsed power systems applications.展开更多
Dielectric capacitors with high power density and fast charge-discharge speed play an essential role in the development of pulsed power systems.The increased demands for miniaturization and practicality of pulsed powe...Dielectric capacitors with high power density and fast charge-discharge speed play an essential role in the development of pulsed power systems.The increased demands for miniaturization and practicality of pulsed power equipment also necessitate the development of dielectric materials that possess high energy density while maintaining ultrahigh efficiency(η).In particular,ultrahigh efficiency signifies minimal energy loss,which is essential for practical applications but challenging to effectively mitigate.Here,we demonstrate a strategy of incorporating heterovalent elements into Ba(Zr_(0.1)Ti_(0.9))O_(3),which contributes to achieving relaxor ferroelectric ceramics and reducing lattice strain,thereby improving the comprehensive energy storage performance.Finally,optimal energy storage performance is attained in 0.85Ba(Zr_(0.1)Ti_(0.9))O_(3)-0.15Bi(Zn_(2/3)Ta_(1/3))O_(3)(BZT-0.15BiZnTa),with an ultrahighηof 97.37%at 440 kV/cm(an advanced level in the lead-free ceramics)and an excellent recoverable energy storage density(Wrec)of 3.74 J/cm^(3).Notably,the BZT-0.15BiZnTa ceramics also exhibit exceptional temperature stability,maintaining fluctuations in Wrec within∼10%andηconsistently exceeding 90% across the wide temperature range of−55℃ to 160℃,and under a high electric field of 250 kV/cm.All these features demonstrate that the relaxor and lattice strain engineering strategies have been successful in achieving high-performance lead-free ceramics,paving the way for designing high-efficiency dielectric capacitors with a wide temperature range.展开更多
Dielectric ceramic capacitors(DCCs)are highly desired for advanced electronic and electrical power systems owing to their ultrahigh power densities and fast charge-discharge speed.However,the low recoverable energy de...Dielectric ceramic capacitors(DCCs)are highly desired for advanced electronic and electrical power systems owing to their ultrahigh power densities and fast charge-discharge speed.However,the low recoverable energy density(Wrec)of dielectric ceramic resulting from the low Weibull breakdown strength(Eb)has been a long-standing challenge.Here,we fabricated 0.8Na_(0.5)Bi_(0.5)TiO_(3)–0.2Sm_(1/3)Sr_(1/2)(Mg_(1/3)Nb_(2/3))O_(3)(0.8NBT–0.2SSMN)relaxor ferroelectric(RFE)ceramics display a greatly improved Eb of 480 kV/cm and largely enhanced Wrec of 7.3 J/cm^(3),far outperforming pure NBT ceramic.We demonstrate that the proposed multi-scale insulation regulation strategy via introducing SSMN with optimal content can effectively reduce grain sizes,increase the bandgap,and create a highly insulating second phase,leading to a high Eb.Additionally,the introduction of Sm^(3+)and Mg^(2+)–Nb^(5+) dopants on the A/B-sites of the Na_(0.5)Bi_(0.5)TiO_(3) lattice created disruptions in the long-range-ordered ferroelectric domains,leading to excellent RFE property.The high Eb and excellent RFE property led to the substantial improvement of Wrec.Else,an exceptional thermal stability of Wrec and efficiency(η)are obtained at 25–200℃(W_(rec∼)(1.77±0.08)J/cm^(3),η∼82.9%±4.3%).This work offers a route for designing high energy storage performance relaxor ferroelectric ceramics for high-voltage dielectric ceramic capacitors.展开更多
Functional crystals are the basic materials for the development of modern science and technology and are playing key roles in the modern information era. In this paper, we review functional crystals in China, includin...Functional crystals are the basic materials for the development of modern science and technology and are playing key roles in the modern information era. In this paper, we review functional crystals in China, including research history, significant achievements, and important applications by highlighting the most recent progress in research. Challenges for the development of functional materials are discussed and possible directions for development are proposed by focusing on potential strengths of these materials.展开更多
In this paper,a complete set of elastic,piezoelectric,and dielectric constants of high-quality tetragonal poled0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal grown by the modified flux method is determined using hig...In this paper,a complete set of elastic,piezoelectric,and dielectric constants of high-quality tetragonal poled0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal grown by the modified flux method is determined using high-resolution Brillouin scattering.A comparison is made between the results obtained by a hybrid method combining ultrasonic and resonant techniques and the results obtained by the Brillouin scattering.The elastic,piezoelectric,and dielectric constants obtained by the two methods are similar.The Brillouin spectrum consists of one longitudinal and two transverse acoustic phonon modes,and the variations of the Brillouin shifts,the full widths at half maximum,and the scattering intensities of these modes with scattering angle 9 are investigated.In particular,the transverse acoustic phonon mode at the lowfrequency becomes markedly soft from 28.2 GHz to 18.4 GHz and broadens gradually with the increase of θ,while its intensity decreases gradually as compared with that of the original one.The possible origins of the results are discussed.展开更多
Relaxor ferroic dielectrics have garnered increasing attention in the past decade as promising materials for energy storage.Among them,relaxor antiferroelectrics(AFEs)and relaxor ferroelectrics(FEs)have shown great pr...Relaxor ferroic dielectrics have garnered increasing attention in the past decade as promising materials for energy storage.Among them,relaxor antiferroelectrics(AFEs)and relaxor ferroelectrics(FEs)have shown great promise in term of high energy storage density and efficiency,respectively.In this study,a unique phase transition from relaxor AFE to relaxor FE was achieved for the first time by introducing strong-ferroelectricity BaTiO_(3)into NaNbO_(3)-BiFeO_(3)system,leading to an evolution from AFE R hierarchical nanodomains to FE polar nanoregions.A novel medium state,consisting of relaxor AFE and relaxor FE,was identified in the crossover of 0.88NaNbO_(3)–0.07BiFeO_(3)–0.05BaTiO_(3)ceramic,exhibiting a distinctive core-shell grain structure due to the composition segregation.By harnessing the advantages of high energy storage density from relaxor AFE and large efficiency from relaxor FE,the ceramic showcased excellent overall energy storage properties.It achieved a substantial recoverable energy storage density W_(rec)~13.1 J/cm^(3)and an ultrahigh efficiencyη~88.9%.These remarkable values shattered the trade-off relationship typically observed in most dielectric capacitors between W_(rec)andη.The findings of this study provide valuable insights for the design of ceramic capacitors with enhanced performance,specifically targeting the development of next generation pulse power devices.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.50832002 and 10874035)the National Basic Research Program of China (Grant No.2009CB623303)
文摘The Ginzburg-Landau theory on ferroelectrics with random field induced by dipole defects is studied by using Monte Carlo simulation, in order to investigate the dipole configuration and the dielectric relaxation of relaxor ferro-electrics. With the increase of random field, the dipole configuration evolves from the long-range ferroelectric order into the coexistence of short-range dipole-clusters and less polarized matrix. The dipole-cluster phase above the transition temperature and superparaelectric fluctuations far below this temperature are identified for the relaxor ferroelectrics. We investigate the frequency dispersion and the time-domain spectrum of the dielectric relaxation, demonstrating the Vogel-Fulcher relationship and the multi-peaked time-domain distribution of the dielectric relaxation.
文摘The dielectric response of complex perovskite relaxor ferrolectrics Pb(Mg1/3Nb2/3) O3 with respect to temperature and frequency was carefully measured. Using a normalized method of the 'universal' many-body theory, the relaxation process was analyzed around the temperature of dielectric absorption maximum. There is no structural phase transition near this temperature and the behavior is closely like that of a polar dipole medium. The functional relationship about frequency and temperature of dielectric pormittivity maximum was also fitted to discuss the dynamic behavior of polar microregion. It is confirmed that a new power exponential Arrhenius relation is better to characterize the relaxation behavior than the Vogel-Fulcher and Debye relations. Based on the polarization theory of polar dipoles, we analyzed the relaxation mechanism of ferroelectric microdomains of relaxor ferroelectrics, and get an ideal distribution function of relaxation time. Consequently, a simulated dielectric response dependence on temperature and frequencies can be expressed, which is well coincided with experiment results.
基金This work was financially supported by the Guangxi Natural Science Fund for Distinguished Young Scholars(Grant No.2022GXNSFFA035034)National Natural Science Foundation of China(Grant Nos.52072080 and U22A20127)National Key R&D Program of China(Grant No.2022YFC2408600).We also would like to acknowledge the support from Xiaomi Foundation/Xiaomi Young Talents Program.
文摘Next-generation advanced high/pulsed power capacitors urgently require dielectric materials with outstanding energy storage performance.Bi_(0.5)Na_(0.5)TiO_(3)-based lead-free materials exhibit high polarization,but the high remanent polarization and large polarization hysteresis limit their applications in dielectric capacitors.Herein,high-entropy perovskite relaxor ferroelectrics(Na_(0.2)Bi_(0.2)Ba_(0.2)Sr_(0.2)Ca_(0.2))(Ti1-x%Zrx%)O_(3)are designed by adding multiple ions in the A-site and replacing the B-site Ti^(4+)with a certain amount of Zr^(4+).The newly designed system showed high relaxor feature and slim polarization-electric(P-E)loops.Especially,improved relaxor feature and obviously delayed polarization saturation were found with the increasing of Zr^(4+).Of particular importance is that both high recoverable energy storage density of 6.6 J/cm^(3) and energy efficiency of 93.5%were achieved under 550 kV/cm for the ceramics of x=6,accompanying with excellent frequency stability,appreciable thermal stability,and prosperous discharge property.This work not only provides potential dielectric materials for energy storage applications,but also offers an effective strategy to obtain dielectric ceramics with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
文摘In this review the dielectric properties of relaxor ferroelectrics are discussed and compared withthe properties of normal dielectrics and ferroelectrics. We try to draw a general picture ofdielectric relaxation starting from a textbook review of the underlying concepts and pay attentionto common behavior of relaxors rather than to the features observed in specific materials. We hopethat this general approach is beneficial to those physicists, chemists, material scientists and deviceengineers who deal with relaxors. Based on the analysis of dielectric properties, a comprehensivedefinition of relaxors is proposed: relaxors are defined as ferroelectrics in which the maximum inthe temperature dependence of static susceptibility occurs within the temperature range ofdielectric relaxation, but does not coincide with the temperature of singularity of relaxation timeor soft mode frequency.
基金supported by the National Nature Science Foundation of China(Grant Nos.51772239,51761145024)the National Basic Research Program of China(973 Program)under the Grant No.2015CB654602+1 种基金the International Science&Technology Cooperation Program of China(Grant 2015DFA51100)“111”Project(No.B14040),and Shaanxi Province Project(2017ktpt-21,2018TD-024)。
文摘Relaxor ferroelectrics have been extensively studied due to their outstanding dielectric,piezoelectric,energy storage,and electro-optical properties.Although various theories were proposed to elaborate on the relaxation phenomena,polar nanoregions formed by disruption of the long-range-order structures are considered to play a key role in relaxor ferroelectrics.Generally,relaxor ferro-electrics are formed by aliovalent substitution or isovalent substitution in normal ferroelectrics,or further combinations of solid solutions.Herein,one category of BaTiO_(3)-based relaxor ferroelectrics with abnormal phase transition and polarization mismatch phenomena is focused.Characteristic parameters of such BaTiO_(3)-based relaxor ferroelectrics,including the Curie temperature,polarization,and lattice parameter,show a typical“U”-shaped variation with compositions.The studied BaTiO_(3)-based relaxor ferroelectrics are mostly solid solutions of A-site coupling and B-site coupling ferroelectrics,exhibiting polarization mismatch in certain compositions[e.g.,0.9BaTiO_(3)-0.1BiScO_(3),0.8BaTiO_(3)-0.2Bi(Mg_(1/2)Ti_(1/2)O_(3),0.8BaTiO_(3)-0.2Bi(Mg_(2/3)Nb_(1/3)O_(3),0.5BaTiO_(3)-0.5Pb(Mg_(1/3)Nb_(2/3)O_(3),0.4BaTiO_(3)-0.6Pb(Zn_(1/3)Nb_(2/3)O_(30,etc.].Of particular interest is that excellent electrical properties can be achieved in the studied relaxor ferroelectrics.Therefore,polarization mismatch theory can also provide guidance for the design of new high-performance lead-free relaxor ferroelectrics.
基金State Key Program of Basic ResearchDevelopm ent! (No.G2 0 0 0 0 6 710 8) the NationalNatural Science Foundation of Chin
文摘An overview is presented on the order-disorder structural transitions and the dielectric mechanism in the complex-perovskite type relaxor ferroelectrics, i.e., the relaxors. Emphasis is put on the theoretical understanding of the structural transitions, the macroscopic dielectric properties, and the relationship between them. The influences of the composition, the temperature, and the atomic interactions on the order-disorder microstructures can be well understood in the cluster-variation-method calculations. The criterion drawn from theoretical analysis is successful in predicting the order-disorder structure of relaxors. Among various physical models about relaxors, the dipole glassy model that described the dielectric response as the thermally activated flips of the local spontaneous polarization under random interactions is discussed in details. The Monte Carlo simulation results of this model are consistent with the linear and nonlinear experiments of relaxors.
基金financially supported by the National Natural Science Foundation of China (No.51788104)。
文摘Ultrafast charge/discharge process and ultrahigh power density enable dielectrics essential components in modern electrical and electronic devices, especially in pulse power systems. However, in recent years, the energy storage performances of present dielectrics are increasingly unable to satisfy the growing demand for miniaturization and integration, which stimulates further researches on dielectrics with higher energy density and efficiency.Among various inorganic dielectrics, perovskite relaxor ferroelectrics are recognized as promising candidates for energy storage applications, with high permittivity and relatively high efficiency. Here, we focus on recent progress and achievements on optimizing perovskite relaxor ferroelectrics toward better energy storage capability through hierarchical design. The principles and key parameters of dielectric energy storage, together with the definition of majority types of dielectrics, are introduced at first. Strategies within various scales include domain, grain size, orientation, and composite engineering are summarized. The existing challenges are presented and future prospects are proposed in the end, with the background of both academic explorations and industrial applications.
基金supported by the National Natural Science Foundation of China(51672220,51902258,51972265)Fundamental Research Funds for the Central Universities(3102019GHXM002)+2 种基金State Key Laboratory of Solidification Processing Project(2019-TZ-04)of China,China Postdoctoral Science Foundation(2019M653729)Natural Science Foundation of Shaanxi Province(2019JQ-621)the Shaanxi Province Postdoctoral Science Foundation(2017BSHEDZZ07).
文摘(1-x)(0.8Bi_(1/2)Na_(1/2)TiO3-0.2Bi_(1/2)K_(1/2)TiO3)-xBi(Ni_(2/3)Nb_(1/3))O3(BNKT-xBNN)solid solution ceramics were fabricated by high temperature solid-state reaction method.All the compositions possess relaxor ferroelectric features,among which the ergodic BNKT-0.02BNN exhibits large repeatable electrostrain value Suni¼0.51%at electric field of 65 kV/cm,with high piezoelectric stain coefficient d33*of 890 pm/V at 45 kV/cm,while the non-ergodic compositions present unrepeatable large strain response.Based on the electric field-composition phase diagram,the repeatability of strain response in ergodic compositions can be attributed to the reversible electric-field-induced phase transition.In addition,the effects of BNN contents on the macroscopic strain properties are explored by analyzing the existing states of the polar regions with corresponding thermal evolutions and electric-field-induced phase transitions.This research is expected to guide the design of lead free relaxor ferroelectric materials with desired electrostrain properties.
基金the US DoE,Office of Basic Energy Sciences,Division of Materials Science and Engineering under Award No.DE-FG02-07ER46410.
文摘Organic and inorganic relaxor ferroelectrics used for electrocaloric effect(ECE)applications areintroduced.Relaxor ferroelectrics offer several advantages for ECE devices,e.g.,infinite stateswithout applying electric field,field-induced large polarization,no-hysteresis ofheating and cooling,small-hysteresis polarization loss,room temperature phase transition,and broad temperaturerange.The ECE in relaxor ferroelectrics under a high electric field can be described using a theorysimilar to that for first-order phase transition materials.Large ECE was observed directly inhigh-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE)68/32 mol%copolymers,P(VDF-TrFE-CFE)(CFE-chlorofluoroethylene)59.2/33.6/7.2 mol%terpolymers,P(vDF-TrFE-CFE)-P(VDF-CTFE)(CTFE-chlorotrifluoroethylene)95/5 wt%terpolymer blended films,and(PbLa)(ZrTi)O_(3)(PLZT)ceramic thin films.ECE reported inPb(Sc_(1/2)Ta_(1/2))O_(3)(PST),Pb(Mg_(1/3)Nb_(2/3))O_(3)-PbTiO_(3)(PMN-PT)thin films is also summarized.Finally,the perspective of ECE devices is llustrated.
基金supported by grants from National Natural Science Foundation of China(52173217)and 111 project(B170003).
文摘For efficient solid-state refrigeration technologies based on electrocaloric effect(ECE),it is a great challenge of simultaneously obtaining a large adiabatic temperature change(DT)within a wide temperature span(Tspan)in lead-free ferroelectric ceramics.Here,we studied the electrocaloric effect(ECE)in(1-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xCaTiO_(3)((1-x)NBT-xCT)and explored the combining effect of morphotropic phase boundary(MPB)and relaxor feature.The addition of CT not only constructs a MPB region with the coexistence of rhombohedral and orthorhombic phases,but also enhances the relaxor feature.The ECE peak appears around the freezing temperature(Tf),and shifts toward to lower temperature with the increasing CT amount.The directly measured ECE result shows that the ceramic of x=0.10,which is in the MPB region,has an optimal ECE property of DTmax=1.28 K@60℃under 60 kV/cm with a wide Tspan of 65C.The enhanced ECE originates from the electric-field-induced transition between more types of polar nanoregions and long-range ferroelectric macrodomains.For the composition with more relaxor feature in the MPB region,such as x?0.12,the ECE is relatively weak under low electric fields but it exhibits a sharp increment under a sufficiently high electric field.This work provides a guideline to develop the solidestate cooling devices for electronic components.
基金supported by the National Natural Science Foundation of China(Grant Nos.21825102,22235002,52172181,and 22105017)Key R&D Plan of the Ministry of Science and Technology of China(Grant No.2022YFB3204000)。
文摘Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy,named high-entropy strategy,realizing nearly ten times growth of energy storage density compared with low-entropy material.Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time.The achievement of excellent energy storage properties should be attributed to the enhanced random field,decreased nanodomain size,strong multiple local distortions,and improved breakdown field.Furthermore,the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized.The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics,promoting the development of advanced capacitors.
基金fully sponsored by the National Demonstration Center for Experimental Materials Science and Engineering Education(Jiangsu University of Science and Technology,China)funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China。
文摘The environmentally-friendly(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(x=0,0.02,0.04,0.06,0.08)relaxor ferroelectric ceramics were prepared by the conventional solid-state method and sintered in air at 1400°C for 2 h.SEM and XRD analyses were utilized to study the surface morphologies and the crystalline structures,respectively.The effects of BaMg_(0.1)Ta_(0.9))O_(3)on the phase transformation,dielectric and ferroelectric properties of Ba(Zr_(1/3)Ti_(2/3))O_(3)ceramics were also investigated.It is found that the average grain size of(1-x)Ba(Zr_(1/3)Ti_(2/3))O_(3)-xBaMg_(0.1)Ta_(0.9))O_(3)(BZT-BMT)perovskite single-phase ceramics decreases as the content of BaMg_(0.1)Ta_(0.9))O_(3)(BMT)increases.The relaxor ferroelectric behavior with diffuse phase transition and well-defined frequency dispersion of dielectric maximum temperature is found for the ceramic with increasing x values.0.98BZT-0.02BMT ceramic shows very good dielectric properties with the relative permittivity and the dielectric loss,measured at 100 k Hz as 6034 and 0.01399 respectively at room temperature.Both remnant polarization and coercive field decreased with increasing BMT content,indicating a transition from the ferroelectric phase to the paraelectric phase at room temperature.
基金sponsored by the National Demonstration Center for Experimental Materials Science and Engineering Education (Jiangsu University of Science and Technology, China)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China
文摘The microstructure,dielectric and ferroelectric properties of(1-y)Ba(Zr0.1Ti0.9)O3-yBa(Zn1/3Nb2/3)O3(y=0-0.05)ceramics prepared by traditional solid state method were investigated by X-ray diffractometer,scanning electron microscope,electric parameter testing system and ferroelectric tester.It is found that the barium zirconate titanate based ceramics are single-phase perovskites as y increases up to 0.05 and their average grain size decreases with the increase of y.The permittivity maximumεr,max is suppressed from 8948 to 1611 at 1 kHz with increasing y,and the ferroelectric-paraelectric phase transition temperature Tm decreases from 93 to-89℃at 1 kHz as y increases.The composition-induced diffuse phase transition is enhanced with increasingy.The relaxor-like ferroelectric behavior with a strong frequency dispersion of Tm and permittivity at T<Tm accompanied by a strong diffuse phase transition is found for the system with high y value.The remnant polarization decreases with increasing y,while the coercive field decreases remarkably and then increases with the increase of y.
基金supported by the National Natural Science Foundation of China(Grant No.51761145024)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-YB-441)the Youth Innovation Team of Shaanxi Universitiesthe Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices(AFMD-KFJJ-21203)The research was made possible by Russian Science Foundation(Project No.23-42-00116).
文摘The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field.
基金This work is supported by the Natural Science Foundation of Shandong Province of China(Nos.ZR2020ME035,ZR2020QE043 and ZR2020QE044)National Natural Science Foundation of China(Nos.51872166 and 52102132)+1 种基金Postdoctoral Research Foundation of China(2017M622196)Opening Project of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(KLIFMD201705).
文摘The increase in energy consumption and its collateral damage on the environment has encouraged the development of environment-friendly ceramic materials with good energy storage properties.In this work,(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3) ceramics were synthesized by the solid-state reaction method.The 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramic exhibited a high recoverable energy storage density of 8.1 J/cm3 and energy storage efficiency of 82.4% at 550 kV/cm.The introduction of Ca(Mg_(1/3)Nb_(2/3))O_(3) reduced the grain size and increased the band gap,thereby enhancing the breakdown field strength of the ceramic materials.The method also resulted in good temperature stability(20–140℃),frequency stability(1–200 Hz),and fatigue stability over 10^(6) cycles.In addition,an ultrahigh power density of 187 MW/cm^(3) and a fast charge-discharge rate(t_(0.9)=57.2 ns)can be obtained simultaneously.Finite element method analysis revealed that the decrease of grain size was beneficial to the increase of breakdown field strength.Therefore,the 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramics resulted in high energy storage properties with good stability and were promising environment-friendly materials for advanced pulsed power systems applications.
基金This work was supported by the National Key Research and Development Program of China(2022YFA1204603)the National Natural Science Foundation of China(Grant No.52372108,52172114,51972126,51972125,62105110,and 52272110)the Shccig-Qinling Program and the Innovation Fund of WNLO,and the Hubei Science and Technology Talent Service Enterprise Program(2023DJC083)。
文摘Dielectric capacitors with high power density and fast charge-discharge speed play an essential role in the development of pulsed power systems.The increased demands for miniaturization and practicality of pulsed power equipment also necessitate the development of dielectric materials that possess high energy density while maintaining ultrahigh efficiency(η).In particular,ultrahigh efficiency signifies minimal energy loss,which is essential for practical applications but challenging to effectively mitigate.Here,we demonstrate a strategy of incorporating heterovalent elements into Ba(Zr_(0.1)Ti_(0.9))O_(3),which contributes to achieving relaxor ferroelectric ceramics and reducing lattice strain,thereby improving the comprehensive energy storage performance.Finally,optimal energy storage performance is attained in 0.85Ba(Zr_(0.1)Ti_(0.9))O_(3)-0.15Bi(Zn_(2/3)Ta_(1/3))O_(3)(BZT-0.15BiZnTa),with an ultrahighηof 97.37%at 440 kV/cm(an advanced level in the lead-free ceramics)and an excellent recoverable energy storage density(Wrec)of 3.74 J/cm^(3).Notably,the BZT-0.15BiZnTa ceramics also exhibit exceptional temperature stability,maintaining fluctuations in Wrec within∼10%andηconsistently exceeding 90% across the wide temperature range of−55℃ to 160℃,and under a high electric field of 250 kV/cm.All these features demonstrate that the relaxor and lattice strain engineering strategies have been successful in achieving high-performance lead-free ceramics,paving the way for designing high-efficiency dielectric capacitors with a wide temperature range.
基金This work is supported by the National Natural Science Foundation of China(Grant No.52162018,52162017)the Natural Science Foundation of Jiangxi Province of China(Grant No.20224ACB214007)the Innovation Special Foundation for Graduate Students of Nanchang Hangkong University(Grant No.YC2022-009).
文摘Dielectric ceramic capacitors(DCCs)are highly desired for advanced electronic and electrical power systems owing to their ultrahigh power densities and fast charge-discharge speed.However,the low recoverable energy density(Wrec)of dielectric ceramic resulting from the low Weibull breakdown strength(Eb)has been a long-standing challenge.Here,we fabricated 0.8Na_(0.5)Bi_(0.5)TiO_(3)–0.2Sm_(1/3)Sr_(1/2)(Mg_(1/3)Nb_(2/3))O_(3)(0.8NBT–0.2SSMN)relaxor ferroelectric(RFE)ceramics display a greatly improved Eb of 480 kV/cm and largely enhanced Wrec of 7.3 J/cm^(3),far outperforming pure NBT ceramic.We demonstrate that the proposed multi-scale insulation regulation strategy via introducing SSMN with optimal content can effectively reduce grain sizes,increase the bandgap,and create a highly insulating second phase,leading to a high Eb.Additionally,the introduction of Sm^(3+)and Mg^(2+)–Nb^(5+) dopants on the A/B-sites of the Na_(0.5)Bi_(0.5)TiO_(3) lattice created disruptions in the long-range-ordered ferroelectric domains,leading to excellent RFE property.The high Eb and excellent RFE property led to the substantial improvement of Wrec.Else,an exceptional thermal stability of Wrec and efficiency(η)are obtained at 25–200℃(W_(rec∼)(1.77±0.08)J/cm^(3),η∼82.9%±4.3%).This work offers a route for designing high energy storage performance relaxor ferroelectric ceramics for high-voltage dielectric ceramic capacitors.
文摘Functional crystals are the basic materials for the development of modern science and technology and are playing key roles in the modern information era. In this paper, we review functional crystals in China, including research history, significant achievements, and important applications by highlighting the most recent progress in research. Challenges for the development of functional materials are discussed and possible directions for development are proposed by focusing on potential strengths of these materials.
基金supported by the National Instrumentation Program of China(Grant No.2011YQ040136)
文摘In this paper,a complete set of elastic,piezoelectric,and dielectric constants of high-quality tetragonal poled0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal grown by the modified flux method is determined using high-resolution Brillouin scattering.A comparison is made between the results obtained by a hybrid method combining ultrasonic and resonant techniques and the results obtained by the Brillouin scattering.The elastic,piezoelectric,and dielectric constants obtained by the two methods are similar.The Brillouin spectrum consists of one longitudinal and two transverse acoustic phonon modes,and the variations of the Brillouin shifts,the full widths at half maximum,and the scattering intensities of these modes with scattering angle 9 are investigated.In particular,the transverse acoustic phonon mode at the lowfrequency becomes markedly soft from 28.2 GHz to 18.4 GHz and broadens gradually with the increase of θ,while its intensity decreases gradually as compared with that of the original one.The possible origins of the results are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.52172181,22105017)Interdisciplinary Research Project for Young Teachers of USTB(No.FRFIDRY-21–002)。
文摘Relaxor ferroic dielectrics have garnered increasing attention in the past decade as promising materials for energy storage.Among them,relaxor antiferroelectrics(AFEs)and relaxor ferroelectrics(FEs)have shown great promise in term of high energy storage density and efficiency,respectively.In this study,a unique phase transition from relaxor AFE to relaxor FE was achieved for the first time by introducing strong-ferroelectricity BaTiO_(3)into NaNbO_(3)-BiFeO_(3)system,leading to an evolution from AFE R hierarchical nanodomains to FE polar nanoregions.A novel medium state,consisting of relaxor AFE and relaxor FE,was identified in the crossover of 0.88NaNbO_(3)–0.07BiFeO_(3)–0.05BaTiO_(3)ceramic,exhibiting a distinctive core-shell grain structure due to the composition segregation.By harnessing the advantages of high energy storage density from relaxor AFE and large efficiency from relaxor FE,the ceramic showcased excellent overall energy storage properties.It achieved a substantial recoverable energy storage density W_(rec)~13.1 J/cm^(3)and an ultrahigh efficiencyη~88.9%.These remarkable values shattered the trade-off relationship typically observed in most dielectric capacitors between W_(rec)andη.The findings of this study provide valuable insights for the design of ceramic capacitors with enhanced performance,specifically targeting the development of next generation pulse power devices.