Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partiti...Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partitioning between the base station and relay nodes was addressed firstly by introducing a metric of effective reuse factor. Then, coverage-oriented and capacity-oriented rantings, as well as two link bandwidth assignment schemes" equal-bandwidth per link" and "equal-bandwidth per mobile station" were developed. These key issues and their impacts on the system performance were analyzed comprehensively and supported by simulations. Results show that the cell capacity and edge user throughput of the proposed network are superior to the traditional non-relay network when an appropriate effective reuse factor is adopted.展开更多
基金Chinese National Science Found for Creative Research Groups (Grant No.60521002)Chinese National Key Technology R&D Program(Grant No.2005BA908B02)Science Foundation of Shanghai Municipal Commission of Science and Technology, Chinese(Grant No.05dz05802)
文摘Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partitioning between the base station and relay nodes was addressed firstly by introducing a metric of effective reuse factor. Then, coverage-oriented and capacity-oriented rantings, as well as two link bandwidth assignment schemes" equal-bandwidth per link" and "equal-bandwidth per mobile station" were developed. These key issues and their impacts on the system performance were analyzed comprehensively and supported by simulations. Results show that the cell capacity and edge user throughput of the proposed network are superior to the traditional non-relay network when an appropriate effective reuse factor is adopted.