A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsi...A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsistency in some published papers can be avoided. The disadvantage is that the closed energy is repeatedly calculated: when closed nodal number along radial direction is more than two, the displacement of nodes behind the crack tip that is multiplied by nodal forces, the closed energy has been calculated and the crack surfaces have been closed, and that closed energy of middle point is calculated repeatedly. A DCB (double cantilever beam) specimen was calculated and compared with other theoretical results, it is shown that a better coincidence is obtained. In addition the same results are also obtained for compact tension specimen, three point bend specimen and single edge cracked specimen. In comparison with theoretical results,the error can be limited within 1 per cent. This method can be extended to analyze the fracture of composite laminates with various delamination cracks.展开更多
In this paper,the fracture problem in non-principal directions of elasticity for a simple layer plate of linear-elastic orthotropic composite materials is studied.The formulae of transformation between characteristic ...In this paper,the fracture problem in non-principal directions of elasticity for a simple layer plate of linear-elastic orthotropic composite materials is studied.The formulae of transformation between characteristic roots,coefficients of elastic compliances in non-principal directions of elasticity and corresponding parameters in principal directions of elasticity are derived.Then,the computing formulae of strain energy release rate under skew-symmetric loading in terms of engineering parameters for principal directions of elasticity are obtained by substituting crack-tip stresses and displacements into the basic formula of the strain energy release rate.展开更多
In the process of engineering construction such as tunnels and slopes,rock mass is frequently subjected to multiple levels of loading and unloading,while previous research ignores the impact of unloading rate on the s...In the process of engineering construction such as tunnels and slopes,rock mass is frequently subjected to multiple levels of loading and unloading,while previous research ignores the impact of unloading rate on the stability of rock mass.A number of uniaxial multi-level cyclic loading-unloading experiments were conducted to better understand the effect of unloading rate on the deformation behavior,energy evolution,and damage properties of rock-like material.The experimental results demonstrated that the unloading rate and relative cyclic number clearly influence the deformation behavior and energy evo-lution of rock-like samples.In particular,as the relative cyclic number rises,the total strain and reversible strain both increase linearly,while the total energy density,elastic energy density,and dissipated energy density all rise nonlinearly.In contrast,the irreversible strain first decreases quickly,then stabilizes,and finally rises slowly.As the unloading rate increases,the total strain and reversible strain both increase,while the irreversible strain decreases.The dissipated energy damage was examined in light of the aforementioned experimental findings.The accuracy of the proposed damage model,which takes into account the impact of the unloading rate and relative cyclic number,is then confirmed by examining the consistency between the model predicted and the experimental results.The proposed damage model will make it easier to foresee how the multi-level loading-unloading cycles will affect the rock-like materials.展开更多
It is pretty challenging and difficult to quantitatively evaluate the intensity of dynamic disasters in deep mining engineering.Based on the uniaxial loading-unloading experiments for five types of rocks,this paper in...It is pretty challenging and difficult to quantitatively evaluate the intensity of dynamic disasters in deep mining engineering.Based on the uniaxial loading-unloading experiments for five types of rocks,this paper investigated the energy evolution characteristics,and identified the damage and crack propagation thresholds.Also,the fragment size distributions of the rocks after failure were analyzed.The energy release rate(Ge)and energy dissipation rate(Gd)were then proposed to describe the change of energies per unit volume and per unit strain.Results demonstrated that the more brittle rocks had the shorter stage of unstable crack growth and the lower induced damage at crack damage thresholds.The evolution characteristics of the strain energy rates can be easily identified by the crack propagation thresholds.The failure intensity index(FId),which equals to the values of Ge/Gd at the failure point,was further put forth.It can account for the brittleness of the rocks,the intensity of rock failure as well as the degree of rock fragmentation.It was revealed that a higher FId corresponded to a lower fractal dimension and stronger dynamic failure.展开更多
This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry ...This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.展开更多
The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impac...In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.展开更多
In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, whi...In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.展开更多
Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-pla...Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.展开更多
Based on the analysis of the deformation in an infinite isotropic elastic matrix with an embedded elliptic crack under far field coupled tensile and shear stresses, the energy release rate and a mixed fracture criteri...Based on the analysis of the deformation in an infinite isotropic elastic matrix with an embedded elliptic crack under far field coupled tensile and shear stresses, the energy release rate and a mixed fracture criterion are obtained using an energy balance approach. The additional compliance tensor induced by a single opening elliptic microcrack in a representative volume element is derived, and the effect of microcracks with random orientations is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes is obtained and is verified with experimental results.展开更多
Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the ...Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.展开更多
Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test ...Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test (FWT). The test results show that the interfacial peel strength is lower than the interlaminar peel strength in FWT test. The mode I interracial fracture toughness (GIC) of sandwich structures containing a pre-crack on the upper face/core interface is determined by modified cracked sandwich beam (MCSB) experiment. It is found that the crack propagates unsynchronously on the two side of the specimen and the propagation of interfacial debonding always stays on the face/core interface during the MCSB tests. In order to simulate the failure of metal foam composite sandwich structures, a computational model based on the Tsai-Hill failure criterion and cohesive zone model is used. By comparing with experiment results, it can be concluded that the computational model can validly simulate the interracial failure of metal foam composite sandwich structures with reasonable accuracy.展开更多
Fatigue induced products generally bear fatigue loads accompanied by impact processes,which reduces their reliable life rapidly. This paper introduces a reliability assessment model based on a local stress–strain app...Fatigue induced products generally bear fatigue loads accompanied by impact processes,which reduces their reliable life rapidly. This paper introduces a reliability assessment model based on a local stress–strain approach considering both low-cycle fatigue and high energy impact loads.Two coupling relationships between fatigue and impact are given with effects of an impact process on fatigue damage and effects of fatigue damage on impact performance. The analysis of the former modifies the fatigue parameters and the Manson–Coffin equation for fatigue life based on material theories. On the other hand, the latter proposes the coupling variables and the difference of fracture toughness caused by accumulative fatigue damage. To form an overall reliability model including both fatigue failure and impact failure, a competing risk model is developed. A case study of an actuator cylinder is given to validate this method.展开更多
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to...An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.展开更多
Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion ...Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy balance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified.展开更多
Peeling-off phenomena in FRP strengthened concrete beams are investigated in this paper. Based on the beam theory and the fracture mechanics, a new theoretical model is proposed to analyze the peeling-off behavior nea...Peeling-off phenomena in FRP strengthened concrete beams are investigated in this paper. Based on the beam theory and the fracture mechanics, a new theoretical model is proposed to analyze the peeling-off behavior near FRP-concrete interfaces, which is governed by residual thermal stresses. Numerical examples are presented to provide a clear insight into the failure mechanism. Some suggestions are provided for the optimal design of FRP strengthened structures.展开更多
文摘A new extrapolation approach was proposed to calculate the strain energy release rates of complex cracks. The point_by_point closed method was used to calculate the closed energy, thus the disadvantage of self_inconsistency in some published papers can be avoided. The disadvantage is that the closed energy is repeatedly calculated: when closed nodal number along radial direction is more than two, the displacement of nodes behind the crack tip that is multiplied by nodal forces, the closed energy has been calculated and the crack surfaces have been closed, and that closed energy of middle point is calculated repeatedly. A DCB (double cantilever beam) specimen was calculated and compared with other theoretical results, it is shown that a better coincidence is obtained. In addition the same results are also obtained for compact tension specimen, three point bend specimen and single edge cracked specimen. In comparison with theoretical results,the error can be limited within 1 per cent. This method can be extended to analyze the fracture of composite laminates with various delamination cracks.
文摘In this paper,the fracture problem in non-principal directions of elasticity for a simple layer plate of linear-elastic orthotropic composite materials is studied.The formulae of transformation between characteristic roots,coefficients of elastic compliances in non-principal directions of elasticity and corresponding parameters in principal directions of elasticity are derived.Then,the computing formulae of strain energy release rate under skew-symmetric loading in terms of engineering parameters for principal directions of elasticity are obtained by substituting crack-tip stresses and displacements into the basic formula of the strain energy release rate.
基金the Water Conservancy Science and Technology Major Project of Hunan Province,China(Project XSKJ2019081-10)the China Scholarship Council(Grant No.202006370344)the First-class Project Special Funding of Yellow River Laboratory,China(Grant No.YRL22YL07).
文摘In the process of engineering construction such as tunnels and slopes,rock mass is frequently subjected to multiple levels of loading and unloading,while previous research ignores the impact of unloading rate on the stability of rock mass.A number of uniaxial multi-level cyclic loading-unloading experiments were conducted to better understand the effect of unloading rate on the deformation behavior,energy evolution,and damage properties of rock-like material.The experimental results demonstrated that the unloading rate and relative cyclic number clearly influence the deformation behavior and energy evo-lution of rock-like samples.In particular,as the relative cyclic number rises,the total strain and reversible strain both increase linearly,while the total energy density,elastic energy density,and dissipated energy density all rise nonlinearly.In contrast,the irreversible strain first decreases quickly,then stabilizes,and finally rises slowly.As the unloading rate increases,the total strain and reversible strain both increase,while the irreversible strain decreases.The dissipated energy damage was examined in light of the aforementioned experimental findings.The accuracy of the proposed damage model,which takes into account the impact of the unloading rate and relative cyclic number,is then confirmed by examining the consistency between the model predicted and the experimental results.The proposed damage model will make it easier to foresee how the multi-level loading-unloading cycles will affect the rock-like materials.
基金This work is financially supported by the fluidization mining for deep coal resources,China(No.3021802)the National Natural Science Foundation of China,China(Nos.51604260 and 51934007)Jiangsu Province Science Foundation for Youths,China(No.BK20180653).
文摘It is pretty challenging and difficult to quantitatively evaluate the intensity of dynamic disasters in deep mining engineering.Based on the uniaxial loading-unloading experiments for five types of rocks,this paper investigated the energy evolution characteristics,and identified the damage and crack propagation thresholds.Also,the fragment size distributions of the rocks after failure were analyzed.The energy release rate(Ge)and energy dissipation rate(Gd)were then proposed to describe the change of energies per unit volume and per unit strain.Results demonstrated that the more brittle rocks had the shorter stage of unstable crack growth and the lower induced damage at crack damage thresholds.The evolution characteristics of the strain energy rates can be easily identified by the crack propagation thresholds.The failure intensity index(FId),which equals to the values of Ge/Gd at the failure point,was further put forth.It can account for the brittleness of the rocks,the intensity of rock failure as well as the degree of rock fragmentation.It was revealed that a higher FId corresponded to a lower fractal dimension and stronger dynamic failure.
基金Projects(51804163,52004130)supported by the National Natural Science Foundation of ChinaProject(2018 M 642678)supported by the China Postdoctoral Science Foundation。
文摘This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.
基金supported by the National Natural Science Foundation of China(No.11072202)
文摘In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.
基金Project supported by the National Natural Science Foundation of China (No. 10432030 and No. 10125209).
文摘In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.
基金the National Natural Science Foundation of China (Nos.E50725414 and E50621403).
文摘Based on the analysis of the deformation in an infinite isotropic elastic matrix with an embedded elliptic crack under far field coupled tensile and shear stresses, the energy release rate and a mixed fracture criterion are obtained using an energy balance approach. The additional compliance tensor induced by a single opening elliptic microcrack in a representative volume element is derived, and the effect of microcracks with random orientations is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes is obtained and is verified with experimental results.
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)
文摘Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.
基金supported by the Major State Basic Research Development Program of China(973Program)under the contract No.2006CB601206
文摘Two types of experiments were designed and performed to evaluate the adhesive bond in metal foam composite sandwich structures. The tensile bond strength of face/core was determined through the flatwise tensile test (FWT). The test results show that the interfacial peel strength is lower than the interlaminar peel strength in FWT test. The mode I interracial fracture toughness (GIC) of sandwich structures containing a pre-crack on the upper face/core interface is determined by modified cracked sandwich beam (MCSB) experiment. It is found that the crack propagates unsynchronously on the two side of the specimen and the propagation of interfacial debonding always stays on the face/core interface during the MCSB tests. In order to simulate the failure of metal foam composite sandwich structures, a computational model based on the Tsai-Hill failure criterion and cohesive zone model is used. By comparing with experiment results, it can be concluded that the computational model can validly simulate the interracial failure of metal foam composite sandwich structures with reasonable accuracy.
基金supported by the National Natural Science Foundation of China(No.61104132)
文摘Fatigue induced products generally bear fatigue loads accompanied by impact processes,which reduces their reliable life rapidly. This paper introduces a reliability assessment model based on a local stress–strain approach considering both low-cycle fatigue and high energy impact loads.Two coupling relationships between fatigue and impact are given with effects of an impact process on fatigue damage and effects of fatigue damage on impact performance. The analysis of the former modifies the fatigue parameters and the Manson–Coffin equation for fatigue life based on material theories. On the other hand, the latter proposes the coupling variables and the difference of fracture toughness caused by accumulative fatigue damage. To form an overall reliability model including both fatigue failure and impact failure, a competing risk model is developed. A case study of an actuator cylinder is given to validate this method.
基金supported by the National Natural Science Foundation of China(Grant No.90510018)the Education Department of Liaoning Province(Grant No.2006T019)
文摘An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.
基金supported by the National Natural Science Foundation of China (Nos. 10872220 and 50725414)Japan Society for the Promotion of Science JSPS (No. L08538)
文摘Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy balance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified.
基金supported by the National Basic Research Program of China(No.2007CB714102)the National Natural Science Foundation of China(No.50979048)
文摘Peeling-off phenomena in FRP strengthened concrete beams are investigated in this paper. Based on the beam theory and the fracture mechanics, a new theoretical model is proposed to analyze the peeling-off behavior near FRP-concrete interfaces, which is governed by residual thermal stresses. Numerical examples are presented to provide a clear insight into the failure mechanism. Some suggestions are provided for the optimal design of FRP strengthened structures.