Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degrad...Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.展开更多
Ramming system is the key device to guarantee the firing speed of self-propelled gun. Based on traditional reliability enhancement testing method, a new kind of reliability enhancement testing simulation method of ram...Ramming system is the key device to guarantee the firing speed of self-propelled gun. Based on traditional reliability enhancement testing method, a new kind of reliability enhancement testing simulation method of ramming system is put forward firstly. In CAD software Pro/E and dynamic simulation software ADAMS, the virtual prototype of ramming system is established. In EASY5 software, the corresponding hydraulic system and control system models are built. The reliability enhancement testing virtual environment of ramming system is developed using the mechanical-electrical-hydraulic co-simulation technology. Based on the load spectra provided by virtual prototype, and the stress distribution provided by finite element analysis and material's S-N curve(S is fatigue strength, N is fatigue life), a model of fatigue enhancement coefficient is established through the failure mechanism analysis. The simulation processes and simulation results show the feasibility of reliability enhancement testing based on virtual prototype, and provide sufficient theory reference for structure improvement and optimization of ramming system.展开更多
基金supported by the Natural Science Foundation of Hunan Province(2018JJ2282)
文摘Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.
基金the National Natural Science Foundation of China(No.51175508)
文摘Ramming system is the key device to guarantee the firing speed of self-propelled gun. Based on traditional reliability enhancement testing method, a new kind of reliability enhancement testing simulation method of ramming system is put forward firstly. In CAD software Pro/E and dynamic simulation software ADAMS, the virtual prototype of ramming system is established. In EASY5 software, the corresponding hydraulic system and control system models are built. The reliability enhancement testing virtual environment of ramming system is developed using the mechanical-electrical-hydraulic co-simulation technology. Based on the load spectra provided by virtual prototype, and the stress distribution provided by finite element analysis and material's S-N curve(S is fatigue strength, N is fatigue life), a model of fatigue enhancement coefficient is established through the failure mechanism analysis. The simulation processes and simulation results show the feasibility of reliability enhancement testing based on virtual prototype, and provide sufficient theory reference for structure improvement and optimization of ramming system.