It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important ...It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important infrastructure facilities, important religious structures or in case of extended returning period of seismic event or floods. Beside issues of durability and maintenance aspects, this involves also the need to cover the probability of exceeding characteristic design live loads during the extended period, while keeping the same levels of the accepted risk that were assumed by the various codes, as good enough for the standard 50 year life cycle. Bearing in mind that design procedures, formulations, materials characteristic strengths and partial safety factors are used for these structures as per the existing codes, scaling of partial safety factors, or alternatively an additional "compensating" factor is required. A simplified approach and procedure to arrive at a reasonable calibration of the code safety factors based on 50 years to compensate for an extended life cycle, based upon structural reliability considerations, is proposed.展开更多
High costs are connected with upgrading railway embankments throughout Denmark using the partial factors for geotechnical design calibrated for general application. One way to reduce the costs is reliability-based cal...High costs are connected with upgrading railway embankments throughout Denmark using the partial factors for geotechnical design calibrated for general application. One way to reduce the costs is reliability-based calibration of the partial factors to a reasonable safety level taking into account the specific design situations and uncertainties relevant to railway embankments. A reliability-based design has been investigated, resulting in an optimal partial factor for the considered subsoil. With a stochastic soil model to simulate the undrained shear strength of soft soil deposits, the partial factor is calibrated using asymptotic sampling for the reliability assessment. The calibration shows that the partial factor can be reduced significantly compared to the value specified in the Danish National Annex to DS/EN 1997-1 (2007), Eurocode 7.展开更多
In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this pap...In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.展开更多
文摘It is common to assume that structures are designed in view of 50 year life cycle as per Euro-Code 2 and other codes. In special cases, structures are designed in view of longer life cycle, such as bridges, important infrastructure facilities, important religious structures or in case of extended returning period of seismic event or floods. Beside issues of durability and maintenance aspects, this involves also the need to cover the probability of exceeding characteristic design live loads during the extended period, while keeping the same levels of the accepted risk that were assumed by the various codes, as good enough for the standard 50 year life cycle. Bearing in mind that design procedures, formulations, materials characteristic strengths and partial safety factors are used for these structures as per the existing codes, scaling of partial safety factors, or alternatively an additional "compensating" factor is required. A simplified approach and procedure to arrive at a reasonable calibration of the code safety factors based on 50 years to compensate for an extended life cycle, based upon structural reliability considerations, is proposed.
基金The funding initiating this work was provided by Banedanmark
文摘High costs are connected with upgrading railway embankments throughout Denmark using the partial factors for geotechnical design calibrated for general application. One way to reduce the costs is reliability-based calibration of the partial factors to a reasonable safety level taking into account the specific design situations and uncertainties relevant to railway embankments. A reliability-based design has been investigated, resulting in an optimal partial factor for the considered subsoil. With a stochastic soil model to simulate the undrained shear strength of soft soil deposits, the partial factor is calibrated using asymptotic sampling for the reliability assessment. The calibration shows that the partial factor can be reduced significantly compared to the value specified in the Danish National Annex to DS/EN 1997-1 (2007), Eurocode 7.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.