This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty ...Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.展开更多
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran...The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint...For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.展开更多
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema...The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.展开更多
To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile...To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile-slope system based on 3D numerical modeling is very challenging because it is computationally expensive and the performance function of the pile failure mode is only defined in the safe domain of soil stability.In this paper,an efficient hybrid response surface method is suggested to study the system reliability of pile-reinforced slopes,where the support vector machine and the Kriging model are used to approximate performance functions of soil failure and pile failure,respectively.The versatility of the suggested method is illustrated in detail with an example.For the example examined in this paper,it is found that the pile failure can significantly contribute to system failure,and the reinforcement ratio can effectively reduce the probability of pile failure.There exists a critical reinforcement ratio beyond which the system failure probability is not sensitive to the reinforcement ratio.The pile spacing affects both the probabilities of soil failure and pile failure of the pile-reinforced slope.There exists an optimal location and an optimal length for the stabilizing piles.展开更多
This paper proposes a risk analysis framework for substation structures based on reliability methods.Even though several risk assessment approaches have been developed for buildings,detailed risk analysis procedures f...This paper proposes a risk analysis framework for substation structures based on reliability methods.Even though several risk assessment approaches have been developed for buildings,detailed risk analysis procedures for infrastructure components have been lacking in prior studies.The proposed framework is showcased by its application to a system of interconnected structures at a power substation in Tehran.Finite element models of structures are developed and validated in accordance with previous experiments.The uncertainties in the material,mass,and geometric properties of structures are described by random variables that are input to the finite element model.An artificial ground motion model is employed to comprehensively consider uncertainty in ground motion.Monte Carlo sampling is subsequently conducted on the library of probabilistic models.The analysis resulted in the loss distribution in the life cycle of structures.Additionally,the loss associated with six earthquake scenarios having specific magnitudes and return periods is computed.The application provides insight into the most vulnerable equipment in the considered system.Furthermore,introduced risk measures can guide stakeholders to make risk-based decisions to optimize design or prioritize a retrofit of infrastructure components under conditions of uncertainty.展开更多
It is necessary to pay particular attention to the uncertainties that exist in an engineering problem to reduce the risk of seismic damage of infrastructures against natural hazards.Moreover,certain structural perform...It is necessary to pay particular attention to the uncertainties that exist in an engineering problem to reduce the risk of seismic damage of infrastructures against natural hazards.Moreover,certain structural performance levels should be satisfied during strong earthquakes.However,these performance levels have been only well described for aboveground structures.This study investigates the main uncertainties involved in the performance-based seismic analysis of a multi-story subway station.More than 100 pulse-like and no pulse-like ground motions have been selected.In this regard,an effective framework is presented,based on a set of nonlinear static and dynamic analyses performed by OpenSees code.The probabilistic seismic demand models for computing the free-field shear strain of soil and racking ratio of structure are proposed.These models result in less variability compared with existing relations,and make it possible to evaluate a wider range of uncertainties through reliability analysis in Rtx software using the Monte Carlo sampling method.This work is performed for three different structural performance levels(denoted as PL1ePL3).It is demonstrated that the error terms related to the magnitude and location of earthquake excitations and also the corresponding attenuation relationships have been the most important parameters.Therefore,using a faultestructure model would be inevitable for the reliability analysis of subway stations.It is found that the higher performance level(i.e.PL3)has more sensitivity to random variables than the others.In this condition,the pulse-like ground motions have a major contribution to the vulnerability of subway stations.展开更多
In the Internet of Things(IoT)system,relay communication is widely used to solve the problem of energy loss in long-distance transmission and improve transmission efficiency.In Body Sensor Network(BSN)systems,biosenso...In the Internet of Things(IoT)system,relay communication is widely used to solve the problem of energy loss in long-distance transmission and improve transmission efficiency.In Body Sensor Network(BSN)systems,biosensors communicate with receiving devices through relay nodes to improve their limited energy efficiency.When the relay node fails,the biosensor can communicate directly with the receiving device by releasing more transmitting power.However,if the remaining battery power of the biosensor is insufficient to enable it to communicate directly with the receiving device,the biosensor will be isolated by the system.Therefore,a new combinatorial analysis method is proposed to analyze the influence of random isolation time(RIT)on system reliability,and the competition relationship between biosensor isolation and propagation failure is considered.This approach inherits the advantages of common combinatorial algorithms and provides a new approach to effectively address the impact of RIT on system reliability in IoT systems,which are affected by competing failures.Finally,the method is applied to the BSN system,and the effect of RIT on the system reliability is analyzed in detail.展开更多
Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein...Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.展开更多
As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions ...As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.展开更多
A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function re...A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
The over-load protective relay is widely used directly affects the safe running of a motor. The reliability for motor protection. The reliability of the over-load protective relay testing and reliability analysis of t...The over-load protective relay is widely used directly affects the safe running of a motor. The reliability for motor protection. The reliability of the over-load protective relay testing and reliability analysis of the over-load protective relay is an important way to improve the reliability of products. In this paper, the reliability test method of the over-load protective relay is studied, and the reliability tests of the typical products are carried out on a reliability tester developed by authors. In terms of the testing results, the reliability analysis is finished. The failure reasons are found and the measures are put forward to improve the reliability of the products.展开更多
Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression b...Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.展开更多
In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by ...In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature.The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly,and the whale optimization algorithm(WOA)is employed to acquire the optimal Krigingmodel and themost probable point(MPP).To verify the performance of theAWK-TISmethod for structural reliability,four numerical cases which are utilized as benchmarks in literature and one real engineering problem about a jet van manipulate mechanism are tested.The results indicate the accuracy and efficiency of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
基金funding support from the China Scholarship Council(CSC).
文摘Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20594)the Fundamental Research Funds for the Central Universities(Grant No.B230205028)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0694).
文摘The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金the National Natural Science Foundation of China(51875073).
文摘For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.
基金supported by the National Natural Science Foundation of China(Grant No.52008402)the Central South University autonomous exploration project(Grant No.2021zzts0790).
文摘The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data.
基金substantially supported by the National Natural Science Foundation of China(Grant No.42072302)Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant No.19SG19)Fundamental Research Funds for the Central Universities.
文摘To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile-slope system based on 3D numerical modeling is very challenging because it is computationally expensive and the performance function of the pile failure mode is only defined in the safe domain of soil stability.In this paper,an efficient hybrid response surface method is suggested to study the system reliability of pile-reinforced slopes,where the support vector machine and the Kriging model are used to approximate performance functions of soil failure and pile failure,respectively.The versatility of the suggested method is illustrated in detail with an example.For the example examined in this paper,it is found that the pile failure can significantly contribute to system failure,and the reinforcement ratio can effectively reduce the probability of pile failure.There exists a critical reinforcement ratio beyond which the system failure probability is not sensitive to the reinforcement ratio.The pile spacing affects both the probabilities of soil failure and pile failure of the pile-reinforced slope.There exists an optimal location and an optimal length for the stabilizing piles.
文摘This paper proposes a risk analysis framework for substation structures based on reliability methods.Even though several risk assessment approaches have been developed for buildings,detailed risk analysis procedures for infrastructure components have been lacking in prior studies.The proposed framework is showcased by its application to a system of interconnected structures at a power substation in Tehran.Finite element models of structures are developed and validated in accordance with previous experiments.The uncertainties in the material,mass,and geometric properties of structures are described by random variables that are input to the finite element model.An artificial ground motion model is employed to comprehensively consider uncertainty in ground motion.Monte Carlo sampling is subsequently conducted on the library of probabilistic models.The analysis resulted in the loss distribution in the life cycle of structures.Additionally,the loss associated with six earthquake scenarios having specific magnitudes and return periods is computed.The application provides insight into the most vulnerable equipment in the considered system.Furthermore,introduced risk measures can guide stakeholders to make risk-based decisions to optimize design or prioritize a retrofit of infrastructure components under conditions of uncertainty.
文摘It is necessary to pay particular attention to the uncertainties that exist in an engineering problem to reduce the risk of seismic damage of infrastructures against natural hazards.Moreover,certain structural performance levels should be satisfied during strong earthquakes.However,these performance levels have been only well described for aboveground structures.This study investigates the main uncertainties involved in the performance-based seismic analysis of a multi-story subway station.More than 100 pulse-like and no pulse-like ground motions have been selected.In this regard,an effective framework is presented,based on a set of nonlinear static and dynamic analyses performed by OpenSees code.The probabilistic seismic demand models for computing the free-field shear strain of soil and racking ratio of structure are proposed.These models result in less variability compared with existing relations,and make it possible to evaluate a wider range of uncertainties through reliability analysis in Rtx software using the Monte Carlo sampling method.This work is performed for three different structural performance levels(denoted as PL1ePL3).It is demonstrated that the error terms related to the magnitude and location of earthquake excitations and also the corresponding attenuation relationships have been the most important parameters.Therefore,using a faultestructure model would be inevitable for the reliability analysis of subway stations.It is found that the higher performance level(i.e.PL3)has more sensitivity to random variables than the others.In this condition,the pulse-like ground motions have a major contribution to the vulnerability of subway stations.
基金supported by the National Natural Science Foundation of China(NSFC)(GrantNo.62172058)the Hunan ProvincialNatural Science Foundation of China(Grant Nos.2022JJ10052,2022JJ30624).
文摘In the Internet of Things(IoT)system,relay communication is widely used to solve the problem of energy loss in long-distance transmission and improve transmission efficiency.In Body Sensor Network(BSN)systems,biosensors communicate with receiving devices through relay nodes to improve their limited energy efficiency.When the relay node fails,the biosensor can communicate directly with the receiving device by releasing more transmitting power.However,if the remaining battery power of the biosensor is insufficient to enable it to communicate directly with the receiving device,the biosensor will be isolated by the system.Therefore,a new combinatorial analysis method is proposed to analyze the influence of random isolation time(RIT)on system reliability,and the competition relationship between biosensor isolation and propagation failure is considered.This approach inherits the advantages of common combinatorial algorithms and provides a new approach to effectively address the impact of RIT on system reliability in IoT systems,which are affected by competing failures.Finally,the method is applied to the BSN system,and the effect of RIT on the system reliability is analyzed in detail.
基金support from the National Key R&D Program of China(Grant Nos.2021YFB2600605,2021YFB2600600)the Overseas Scholar Program in the Hebei Province(C20190514)+1 种基金from the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures Project(ZZ2020-20)from the Youth Foundation of Hebei Science and Technology Research Project(QN2018108).
文摘Multiple failure modes tend to be identified in the reliability analysis of a redundant truss structure.This identification process involves updating the model for identifying the next potential failure members.Herein we intend to update the finite element model automatically in the identification process of failure modes and further perform the system reliability analysis efficiently.This study presents a framework that is implemented through the joint simulation of MATLAB and APDL and consists of three parts:reliability index of a single member,identification of dominant failure modes,and system-level reliability analysis for system reliability analysis of truss structures.Firstly,RSM(response surface method)combines with a constrained optimization model to calculate the reliability indices ofmembers.Then theβ-unzipping method is adopted to identify the dominant failuremodes,and the system function in MATLAB,as well as the EKILL command in APDL,is used to facilitate the automatic update of the finite element model and realize load-redistribution.Besides,the differential equivalence recursion algorithmis performed to approximate the reliability indices of failuremodes efficiently and accurately.Eventually,the PNET(probabilistic network evaluation technique)is used to calculate the joint failure probability as well as the system reliability index.Two illustrative examples demonstrate the accuracy and efficiency of the proposed system reliability analysis framework through comparison with corresponding references.
基金co-supported by the Natural Science Foundation of China(No.61833016)the Shaanxi Out-standing Youth Science Foundation(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038).
文摘As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.
文摘A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
基金Project (No. E2005000039) supported by the Natural Science Foun-dation of Hebei Province, China
文摘The over-load protective relay is widely used directly affects the safe running of a motor. The reliability for motor protection. The reliability of the over-load protective relay testing and reliability analysis of the over-load protective relay is an important way to improve the reliability of products. In this paper, the reliability test method of the over-load protective relay is studied, and the reliability tests of the typical products are carried out on a reliability tester developed by authors. In terms of the testing results, the reliability analysis is finished. The failure reasons are found and the measures are put forward to improve the reliability of the products.
基金Federal Highway Administration Under Grant No. DDEGRD-06-X-00408
文摘Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.
基金supported by the Technical Basic Scientific Research Projects of State Administration of Science,Technology and Industry for National Defence,PRC (Grant No.JSZL2019204C001).
文摘In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature.The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly,and the whale optimization algorithm(WOA)is employed to acquire the optimal Krigingmodel and themost probable point(MPP).To verify the performance of theAWK-TISmethod for structural reliability,four numerical cases which are utilized as benchmarks in literature and one real engineering problem about a jet van manipulate mechanism are tested.The results indicate the accuracy and efficiency of the proposed method.