Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement ...Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement of elements (components) in the system. To avoid serious failures for such complex systems, recourse can be had to the redundancy techniques available in the literature. These techniques help to improve system reliability, without affecting the reliability of system components. This paper is interested in the proposal of a model for evaluating the failure rate of a standby multi-components system and in improving the reliability of mechanical systems, arranged in a topology (series, parallel, or mixed).展开更多
To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,...To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,and obtains calculating formulas of reliability and availability of the system by solving differential equations.In this paper,the failure rates are expressed in polynomial configuration.The constant,linear and Weibull failure rate are in their special form.The polynomial failure rates provide flexibility in modeling the practical time-varying failure rates.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
Conventional reliability models of belt drive systems in the failure mode of fatigue are mainly based on the static stress strength interference model and its extended models, which cannot consider dynamic factors in ...Conventional reliability models of belt drive systems in the failure mode of fatigue are mainly based on the static stress strength interference model and its extended models, which cannot consider dynamic factors in the operational duration and be used for further availability analysis. In this paper, time-dependent reliability models, failure rate models and availability models of belt drive systems are developed based on the system dynamic equations with the dynamic stress and the material property degradation taken into account. In the proposed models, dynamic failure dependence and imperfect maintenance are taken into consideration. Furthermore, the issue of time scale inconsistency between system failure rate and system availability is proposed and addressed in the proposed system availability models. Besides, Monte Carlo simulations are carried out to validate the established models. The results from the proposed models and those from the Monte Carlo simulations show a consistency. Furthermore, the case studies show that the failure dependence, imperfect maintenance and the time scale inconsistency have significant influences on system availability. The independence assumption about the belt drive systems results in underestimations of both reliability and availability. Moreover, the neglect of the time scale inconsistency causes the underestimate of the system availability. Meanwhile, these influences show obvious time-dependent characteristics.展开更多
Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully re...Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.展开更多
An analytical moment-based method for calculating structuralfirst failure times under non-Gaussian stochastic behavior is proposed. In the method, a power series that constants can be obtained from response moments (...An analytical moment-based method for calculating structuralfirst failure times under non-Gaussian stochastic behavior is proposed. In the method, a power series that constants can be obtained from response moments (skewness, kurtosis, etc.) is used firstly to map a non-Gaussian structural response into a standard Gaussian process, then mean up-crossing rates, mean clump size and the initial passage probability of a critical barrier level by the original structural response are estimated, and finally, the formula for calculating first failure times is established on the assur^ption that corrected up-crossing rates are independent. An analysis of a nonlinear single-degree-of-freedom dynamical system excited by a Gaussian model of load not only demonstrates the usage of the proposed method but also shows the accuracy and efficiency of the proposed method by comparisons between the present method and other methods such as Monte Carlo simulation and the traditional Gaussian model.展开更多
As a bladder accumulator is a high reliable and long life component in a hydraulic system,its cost is high and it takes a lot of time to test its reliability,therefore,a reliability test with small sample is performed...As a bladder accumulator is a high reliable and long life component in a hydraulic system,its cost is high and it takes a lot of time to test its reliability,therefore,a reliability test with small sample is performed,and no failure data is obtained using the method of fixed time truncation. In the case of Weibull distribution,a life reliability model of bladder energy storage is established by Bayesian method using the optimal confidence intervals method,a model of one-sided lower confidence intervals of the reliability and one-sided lower confidence intervals model of the reliability life are established. Results of experiments show that the evaluation method of no failure data under Weibull distribution is a good way to evaluate the reliability of the accumulator,which is convenient for engineering application,and the reliability of the accumulator has theoretical and practical significance.展开更多
Functional inspection is a type of preventive maintenance of Reliability Centered Maintenance ( RCM). We, in this paper, establish a functional inspection model( FIM) the cost model and the availability model for ...Functional inspection is a type of preventive maintenance of Reliability Centered Maintenance ( RCM). We, in this paper, establish a functional inspection model( FIM) the cost model and the availability model for the immeasurable potential failure state based on the delay time concept. This model can be used to determine the appropriate Functional Inspection Interval(FII) to achieve the goal of specific cost and availability and to assist in maintenance decision making.展开更多
At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under...At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.展开更多
Blade vibration failure is one of the main failure modes of compressor wheel of turbocharger for vehicle application. The existing models for evaluating the reliability of blade vibration of compressor wheel are stati...Blade vibration failure is one of the main failure modes of compressor wheel of turbocharger for vehicle application. The existing models for evaluating the reliability of blade vibration of compressor wheel are static, and can not reflect the relationship between the reliability of compressor wheel with blade vibration failure mode and the life parameter. For the blade vibration failure mode of compressor wheel of turbocharger, the reliability evaluation method is studied. Taking a compressor wheel of turbocharger for vehicle application as an example, the blade vibration characteristics and how they change with the operating parameters of turbocharger are analyzed. The failure criterion for blade vibration mode of compressor wheel is built with the Campbell diagram, and taking the effect of the dispersity of blade natural vibration frequency and randomness of turbocharger operating speed into account, time-dependent reliability models of compressor wheel with blade vibration failure mode are derived, which embody the parameters of blade natural vibration frequency, turbocharger operating speed, the blade number of compressor wheel, life index and minimum number of resonance, etc. Finally, the rule governing the reliability and failure rate of compressor wheel and the method for determining the reliable life of compressor with blade vibration is presented. A method is proposed to evaluate the reliability of compressor wheel with blade vibration failure mode time-dependently.展开更多
Aviation products would go through a multi-phase improvement in reliability performance during the research and development process.In the literature,most of the existing reliability growth models assume a constant fa...Aviation products would go through a multi-phase improvement in reliability performance during the research and development process.In the literature,most of the existing reliability growth models assume a constant failure intensity in each test phase,which inevitably limits the scope of the application.To address this problem,we propose two new models considering timevarying failure intensity in each stage.The proposed models borrow the idea from the accelerated failure-time models.It is assumed that time between failures follow the log-location-scale distribution and the scale parameters in each phase do not change,which forms the basis for integrating the data from all test stages.For the test-find-test scenario,an improvement factor is introduced to construct the relationship between two successive location parameters.Whereas for the test-fix-test scenario,the instantaneous cumulative time between failures is assumed to be consistent with Duane model and derive the formulation of location parameter.Likelihood ratio test is further utilized to test whether the assumption of constant failure intensity in each phase is suitable.Several applications with real reliability growth data show that the assumptions are reasonable and the proposed models outperform the existing models.展开更多
The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and n...The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.展开更多
In real life, there are situations in which the lifetime of the components of a technical system (and hence the lifetime of the system) is discrete. In this paper, we study the residual life, a (n - k + 1)-out-of-n sy...In real life, there are situations in which the lifetime of the components of a technical system (and hence the lifetime of the system) is discrete. In this paper, we study the residual life, a (n - k + 1)-out-of-n system under the assumptions that the components of the system are independent identically distributed with common discrete distribution function F. We define the mean residual lifetime (MRL) of the system and under different scenarios investigate several aging and stochastic properties of MRL.展开更多
The development of power conversion systems based on fuel cells has been demanding reliability studies since the requirements associated with cost and durability of these technological products have become fundamental...The development of power conversion systems based on fuel cells has been demanding reliability studies since the requirements associated with cost and durability of these technological products have become fundamental to their acceptance by the energy market. The experimental part of the reliability study presented in this work consisted of performing life tests with single proton exchange membrane fuel cells (PEMFCs). The proposed reliability analysis methodology covered the application of qualitative and quantitative techniques. In the qualitative approach, a Failure Mode and Effect Analysis was developed in order to identify and evaluate all potential failures associated with the operation of fuel cells. In the quantitative approach, a statistical analysis was applied to the sample data generated in long-term steady-state tests of these devices. A two-parameter exponential distribution was fitted to data and the maximum likelihood estimate for the mean time to failure (MTTF) of the fuel cells was calculated. It is important to point out that the tests performed under the scope of this study were the first long-term experiments performed with the fuel cells produced in the laboratories of IPEN-CNEN/SP, Brazil. Although the results indicated that fuel cell performance and durability were still at a level below the targets normally established for similar commercial devices, the improvement of the main components of PEMFCs has been the objective of several projects developed at the institute. Thus, the main benefit brought by this study is the proposed methodology, which can be implemented as part of a reliability growth analysis of the fuel cells and can be integrated into the design process of these devices.展开更多
In this article,mathematical modeling for the evaluation of reliability is studied using two methods.One of the methods,is developed based on possibility theory.The performance of the reliability of the system is of p...In this article,mathematical modeling for the evaluation of reliability is studied using two methods.One of the methods,is developed based on possibility theory.The performance of the reliability of the system is of prime concern.In view of this,the outcomes for the failure are required to evaluate with utmost care.In possibility theory,the reliability information data determined from decision-making experts are subjective.The samemethod is also related to the survival possibilities as against the survival probabilities.The other method is the one that is developed using the concept of approximation of closed interval including the piecewise quadratic fuzzy numbers.In this method,a decision-making expert is not sure of his/her estimates of the reliability parameters.Numerical experiments are performed to illustrate the efficiency of the suggested methods in this research.In the end,the paper is concluded with some future research directions to be explored for the proposed approach.展开更多
With the high integration of power electronic technologies in microgrids,the reliability assessment considering power electronic devices has become a hot topic.However,so far no research has considered the impact of t...With the high integration of power electronic technologies in microgrids,the reliability assessment considering power electronic devices has become a hot topic.However,so far no research has considered the impact of the operation failure probability of power electronic equipment on the overall reliability of the microgrid.This paper aims to construct a holistic operation failure rate model of power electronic systems based on the overall reliability assessment of islanded microgrid with high penetration of renewable energy sources(RESs).In addition,to improve the reliability of islanded microgrid,the conventional battery energy storage system(BESS)is replaced by the hybrid energy storage system(HESS).Based on the proposed model,the operation failure models for the power electronic modules in microgrid are built and tested,and then the sensitivity analysis is performed for exploring the influence of various factors on the reliability of the microgrid.展开更多
文摘Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement of elements (components) in the system. To avoid serious failures for such complex systems, recourse can be had to the redundancy techniques available in the literature. These techniques help to improve system reliability, without affecting the reliability of system components. This paper is interested in the proposal of a model for evaluating the failure rate of a standby multi-components system and in improving the reliability of mechanical systems, arranged in a topology (series, parallel, or mixed).
文摘To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,and obtains calculating formulas of reliability and availability of the system by solving differential equations.In this paper,the failure rates are expressed in polynomial configuration.The constant,linear and Weibull failure rate are in their special form.The polynomial failure rates provide flexibility in modeling the practical time-varying failure rates.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
基金Supported by Program for Liaoning Innovative Talents in University(Grant No.LR2017070)National Natural Science Foundation of China(Grant No.51505207)+1 种基金Open Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering(Grant No.ZSTUME02A01)National Natural Science Foundation of China(Grant No.U1708255)
文摘Conventional reliability models of belt drive systems in the failure mode of fatigue are mainly based on the static stress strength interference model and its extended models, which cannot consider dynamic factors in the operational duration and be used for further availability analysis. In this paper, time-dependent reliability models, failure rate models and availability models of belt drive systems are developed based on the system dynamic equations with the dynamic stress and the material property degradation taken into account. In the proposed models, dynamic failure dependence and imperfect maintenance are taken into consideration. Furthermore, the issue of time scale inconsistency between system failure rate and system availability is proposed and addressed in the proposed system availability models. Besides, Monte Carlo simulations are carried out to validate the established models. The results from the proposed models and those from the Monte Carlo simulations show a consistency. Furthermore, the case studies show that the failure dependence, imperfect maintenance and the time scale inconsistency have significant influences on system availability. The independence assumption about the belt drive systems results in underestimations of both reliability and availability. Moreover, the neglect of the time scale inconsistency causes the underestimate of the system availability. Meanwhile, these influences show obvious time-dependent characteristics.
基金supported by the Centennial Trust Fund, School of Mining Engineering, University of the Witwatersrand, South Africa
文摘Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.
基金Project supported by the National Natural Science Foundation Of China (No.50478017)
文摘An analytical moment-based method for calculating structuralfirst failure times under non-Gaussian stochastic behavior is proposed. In the method, a power series that constants can be obtained from response moments (skewness, kurtosis, etc.) is used firstly to map a non-Gaussian structural response into a standard Gaussian process, then mean up-crossing rates, mean clump size and the initial passage probability of a critical barrier level by the original structural response are estimated, and finally, the formula for calculating first failure times is established on the assur^ption that corrected up-crossing rates are independent. An analysis of a nonlinear single-degree-of-freedom dynamical system excited by a Gaussian model of load not only demonstrates the usage of the proposed method but also shows the accuracy and efficiency of the proposed method by comparisons between the present method and other methods such as Monte Carlo simulation and the traditional Gaussian model.
基金Supported by the National Natural Science Foundation of China(No.51405424,51675461,11673040)
文摘As a bladder accumulator is a high reliable and long life component in a hydraulic system,its cost is high and it takes a lot of time to test its reliability,therefore,a reliability test with small sample is performed,and no failure data is obtained using the method of fixed time truncation. In the case of Weibull distribution,a life reliability model of bladder energy storage is established by Bayesian method using the optimal confidence intervals method,a model of one-sided lower confidence intervals of the reliability and one-sided lower confidence intervals model of the reliability life are established. Results of experiments show that the evaluation method of no failure data under Weibull distribution is a good way to evaluate the reliability of the accumulator,which is convenient for engineering application,and the reliability of the accumulator has theoretical and practical significance.
基金the National Equipment Advanced Research Foundation under Grant No.9140A04050707JW0507
文摘Functional inspection is a type of preventive maintenance of Reliability Centered Maintenance ( RCM). We, in this paper, establish a functional inspection model( FIM) the cost model and the availability model for the immeasurable potential failure state based on the delay time concept. This model can be used to determine the appropriate Functional Inspection Interval(FII) to achieve the goal of specific cost and availability and to assist in maintenance decision making.
基金This researchwas supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA133)the Natural Science Foundation of Gansu(No.21JR7RA258).
文摘At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.
基金supported by National Natural Science Foundation of China(Grant Nos.51375465,50905007)
文摘Blade vibration failure is one of the main failure modes of compressor wheel of turbocharger for vehicle application. The existing models for evaluating the reliability of blade vibration of compressor wheel are static, and can not reflect the relationship between the reliability of compressor wheel with blade vibration failure mode and the life parameter. For the blade vibration failure mode of compressor wheel of turbocharger, the reliability evaluation method is studied. Taking a compressor wheel of turbocharger for vehicle application as an example, the blade vibration characteristics and how they change with the operating parameters of turbocharger are analyzed. The failure criterion for blade vibration mode of compressor wheel is built with the Campbell diagram, and taking the effect of the dispersity of blade natural vibration frequency and randomness of turbocharger operating speed into account, time-dependent reliability models of compressor wheel with blade vibration failure mode are derived, which embody the parameters of blade natural vibration frequency, turbocharger operating speed, the blade number of compressor wheel, life index and minimum number of resonance, etc. Finally, the rule governing the reliability and failure rate of compressor wheel and the method for determining the reliable life of compressor with blade vibration is presented. A method is proposed to evaluate the reliability of compressor wheel with blade vibration failure mode time-dependently.
基金co-supported by the National Natural Science Foundation of China(No.52075019)the Academic Excellence Foundation of BUAA for PhD Students,China。
文摘Aviation products would go through a multi-phase improvement in reliability performance during the research and development process.In the literature,most of the existing reliability growth models assume a constant failure intensity in each test phase,which inevitably limits the scope of the application.To address this problem,we propose two new models considering timevarying failure intensity in each stage.The proposed models borrow the idea from the accelerated failure-time models.It is assumed that time between failures follow the log-location-scale distribution and the scale parameters in each phase do not change,which forms the basis for integrating the data from all test stages.For the test-find-test scenario,an improvement factor is introduced to construct the relationship between two successive location parameters.Whereas for the test-fix-test scenario,the instantaneous cumulative time between failures is assumed to be consistent with Duane model and derive the formulation of location parameter.Likelihood ratio test is further utilized to test whether the assumption of constant failure intensity in each phase is suitable.Several applications with real reliability growth data show that the assumptions are reasonable and the proposed models outperform the existing models.
基金supported by the National Natural Science Foundation of China (60564001)the Program for New Century Excellent Talentsin University (NCET-06-0756)
文摘The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.
文摘In real life, there are situations in which the lifetime of the components of a technical system (and hence the lifetime of the system) is discrete. In this paper, we study the residual life, a (n - k + 1)-out-of-n system under the assumptions that the components of the system are independent identically distributed with common discrete distribution function F. We define the mean residual lifetime (MRL) of the system and under different scenarios investigate several aging and stochastic properties of MRL.
文摘The development of power conversion systems based on fuel cells has been demanding reliability studies since the requirements associated with cost and durability of these technological products have become fundamental to their acceptance by the energy market. The experimental part of the reliability study presented in this work consisted of performing life tests with single proton exchange membrane fuel cells (PEMFCs). The proposed reliability analysis methodology covered the application of qualitative and quantitative techniques. In the qualitative approach, a Failure Mode and Effect Analysis was developed in order to identify and evaluate all potential failures associated with the operation of fuel cells. In the quantitative approach, a statistical analysis was applied to the sample data generated in long-term steady-state tests of these devices. A two-parameter exponential distribution was fitted to data and the maximum likelihood estimate for the mean time to failure (MTTF) of the fuel cells was calculated. It is important to point out that the tests performed under the scope of this study were the first long-term experiments performed with the fuel cells produced in the laboratories of IPEN-CNEN/SP, Brazil. Although the results indicated that fuel cell performance and durability were still at a level below the targets normally established for similar commercial devices, the improvement of the main components of PEMFCs has been the objective of several projects developed at the institute. Thus, the main benefit brought by this study is the proposed methodology, which can be implemented as part of a reliability growth analysis of the fuel cells and can be integrated into the design process of these devices.
文摘In this article,mathematical modeling for the evaluation of reliability is studied using two methods.One of the methods,is developed based on possibility theory.The performance of the reliability of the system is of prime concern.In view of this,the outcomes for the failure are required to evaluate with utmost care.In possibility theory,the reliability information data determined from decision-making experts are subjective.The samemethod is also related to the survival possibilities as against the survival probabilities.The other method is the one that is developed using the concept of approximation of closed interval including the piecewise quadratic fuzzy numbers.In this method,a decision-making expert is not sure of his/her estimates of the reliability parameters.Numerical experiments are performed to illustrate the efficiency of the suggested methods in this research.In the end,the paper is concluded with some future research directions to be explored for the proposed approach.
基金supported in part by National“111”Project,China(No.B08036)in part by Chongqing Graduate Student Research Innovation Project,China(No.CYB14015).
文摘With the high integration of power electronic technologies in microgrids,the reliability assessment considering power electronic devices has become a hot topic.However,so far no research has considered the impact of the operation failure probability of power electronic equipment on the overall reliability of the microgrid.This paper aims to construct a holistic operation failure rate model of power electronic systems based on the overall reliability assessment of islanded microgrid with high penetration of renewable energy sources(RESs).In addition,to improve the reliability of islanded microgrid,the conventional battery energy storage system(BESS)is replaced by the hybrid energy storage system(HESS).Based on the proposed model,the operation failure models for the power electronic modules in microgrid are built and tested,and then the sensitivity analysis is performed for exploring the influence of various factors on the reliability of the microgrid.