Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad h...Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.展开更多
Owing to the long propagation delay and high error rate of acoustic channels, it is very challenging to provide reliable data transfer for underwater sensor networks. Moreover, network coding is proved to be an effect...Owing to the long propagation delay and high error rate of acoustic channels, it is very challenging to provide reliable data transfer for underwater sensor networks. Moreover, network coding is proved to be an effective coding technique for throughput and robustness of networks. In this paper, we propose a Reliable Braided Multipath Routing with Network Coding for underwater sensor networks (RBMR-NC). Disjoint multi-path algorithm is used to build independent actual paths, as called main paths. Some braided paths on each main path are built according to the braided multi-path algorithm, which are called logic paths. When a data packet is transmitted by these nodes, the nodes can employ network coding to encode packets coming from the same group in order to further reduce relativity among these packets, and enhance the probability of successful decoding at the sink node. Braided multi-path can make the main paths to be multiplexed to reduce the probability of long paths. This paper mainly employs successful delivery rate to evaluate RBMR-NC model with theoretical analysis and simulation methods. The results indicate that the proposed RBMR-NC protocol is valuable to enhance network reliability and to reduce system redundancy.展开更多
Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Establis...Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Established routes frequently become stale, and existing communication flows are interrupted, incurring delay and additional overhead. In this paper we propose a novel hybrid routing protocol, which is the combined between of the table-driven routing and on-demand routing in VANET. It makes fast convergence in routing process, minimal drop links, making more reliable links, and adaptive with changing of VANET topology. With neighbor table is updated instantaneously, and using strong neighbor for routing process makes route discovery process start whenever it received requirement, and through using route mechanism appropriately it reduces significantly route overhead at each node. The simulation results illustrate the outstanding properties of our proposed routing protocol.展开更多
In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy availa...In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy available in the nodes and the re-ceived signal strength of the nodes to identify the best possible route to the destination. Reliability is achieved by selecting a number of intermediate nodes as waypoints and the route is divided into smaller segments by the waypoints. One distinct ad-vantage of this model is that when a node on the route moves out or fails, instead of discarding the whole original route, only the two waypoint nodes of the broken segment are used to find a new path. REPU outperforms traditional schemes by establishing an energy-efficient path and also takes care of efficient route maintenance. Simulation results show that this routing scheme achieves much higher performance than the classical routing protocols, even in the presence of high node density, and overcomes simul-taneous packet forwarding.展开更多
Satellite networks have high requirements for security and data processing speed.In order to improve the reliability of the network,software-defined network(SDN)technology is introduced and a central controller is set...Satellite networks have high requirements for security and data processing speed.In order to improve the reliability of the network,software-defined network(SDN)technology is introduced and a central controller is set in the network.Due to the characteristics of global perspective,control data separation,and centralized control of SDN,the idea of SDN is introduced to the design of the satellite network model.As a result,satellite nodes are only responsible for data transmission,while the maintenance of the links and the calculation of routes are implemented by the controller.For the massive LEO satellite network based on SDN,a state evaluation decision routing mechanism is proposed.The designed mechanism monitors the status of the entire network effectively and reduces the on-board load on the satellite network.The best routing decision is made under the comprehensive consideration of the current and historical status of each inter-satellite link between Low Earth Orbit(LEO)satellite network nodes.The calculation and storage requirements are controlled within a reasonable range.Based on the curve parameter transmission fuzzy encryption algorithm,a safe and reliable condition assessment decision routing mechanism(CADRM)is designed.It ensures that the personal information of the LEO satellite network can be transmitted safely and effectively.The experimental simulation results show the improvement of network throughput,the reduction of packet loss rate and the enhancing of network reliability.展开更多
The intelligent vehicle network uses advanced information technology to establish an efficient integrated vehicle transport system, which has received great attention in industry and academia, lnternet of Vehicles (...The intelligent vehicle network uses advanced information technology to establish an efficient integrated vehicle transport system, which has received great attention in industry and academia, lnternet of Vehicles (loV) in an urban environment is operated in a wireless environment with high bit error rate and interference. In addition, the wireless link between vehicles is likely to be lost. All of this makes it an important challenge to provide reliable mobile routing in an urban traffic environment. In this paper, a reliable routing algorithm with network coding (RR_ NC) is proposed to solve the above problems. A routing node sequence is discovered in IoV from source to destination by multi-metric ant colony optimization algorithm (MACO), and then clusters are formed around every node in the sequence. By adding linear encoding into the transmission of data between vehicle's clusters, the RR_NC provides much more reliable transmission and can recover the original message in the event of disorder and loss of message. Simulations are taken under different scenarios, and the results prove that this novel algorithm can deliver the information more reliably between vehicles in real-time with lower data loss and communication overhead.展开更多
A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structure...A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.展开更多
In WSNs’ applications, not only the reliable end-to-end communications are must be ensured, but also the reduction of energy consumption and the entire network’s lifetim e should be optimized. All of the above have ...In WSNs’ applications, not only the reliable end-to-end communications are must be ensured, but also the reduction of energy consumption and the entire network’s lifetim e should be optimized. All of the above have become to be an important way to evaluate the performance of routing protocols. In this paper, an op-timization model for WSNs’ lifetime is firstly advanced. Secondly, the shortage of ETX based routing metric is solved with the help of the optimization model. Thirdly, an energy balanced routing metric is advanced which is called EBRM in this paper. The result of simulation in NS-2 shows that, the EBRM metric can not only prolong the network’s lifetime, but also can ensure the reliable end-to-end communication.展开更多
Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits s...Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits security design defects,such as an unconditional trust mechanism and the default acceptance of BGP route announcements from peers by BGP neighboring nodes,easily triggering prefix hijacking,path forgery,route leakage,and other BGP security threats.Meanwhile,the traditional BGP security mechanism,relying on a public key infrastructure,faces issues like a single point of failure and a single point of trust.The decentralization,anti-tampering,and traceability advantages of blockchain offer new solution ideas for constructing secure and trusted inter-domain routing mechanisms.In this paper,we summarize the characteristics of BGP protocol in detail,sort out the BGP security threats and their causes.Additionally,we analyze the shortcomings of the traditional BGP security mechanism and comprehensively evaluate existing blockchain-based solutions to address the above problems and validate the reliability and effectiveness of blockchain-based BGP security methods in mitigating BGP security threats.Finally,we discuss the challenges posed by BGP security problems and outline prospects for future research.展开更多
Energy management and packet delivery rate are the important factors in ad hoc networks.It is the major network where nodes share the information without administration.Due to the mobility of nodes,maximum energy is s...Energy management and packet delivery rate are the important factors in ad hoc networks.It is the major network where nodes share the information without administration.Due to the mobility of nodes,maximum energy is spent on transmission of packets.Mostly energy is wasted on packet dropping and false route discovery.In this research work,Fuzzy Based Reliable Load Balanced Routing Approach(RLRA)is proposed to provide high energy efficiency and more network lifetime using optimal multicast route discovery mechanism.It contains three phases.In first phase,optimal multicast route discovery is initiated to resolve the link failures.In second phase,the link quality is estimated and set to threshold value to meet the requirements of high energy efficiency.In third phase,energy model is shown to obtain total energy of network after transmission of packets.A multicast routing is established Based on path reliability and fault tolerant calculation is done and integrated with multicast routing.The routes can withstand the malicious issues.Fuzzy decision model is integrated with propose protocol to decide the performance of network lifetime.The network simulation tool is used for evaluating the RLRA with existing schemes and performance of RLRA is good compared to others.展开更多
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o...The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.展开更多
The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this...The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.展开更多
The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wir...The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.展开更多
This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc...This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.展开更多
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an...The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.展开更多
The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and mai...The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.展开更多
To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQu...To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.展开更多
One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw...One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.展开更多
Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts th...Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.展开更多
文摘Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.
基金supported by the National Natural Science Foundation of China (Grant Nos.60472060 and 60473039)the National High Technology Research and Development Programof China (863 Program,Grant No.2006AA01Z119)the Innovation Fund of Chinese Academy of Space Technology (Grant No.CAST20090801)
文摘Owing to the long propagation delay and high error rate of acoustic channels, it is very challenging to provide reliable data transfer for underwater sensor networks. Moreover, network coding is proved to be an effective coding technique for throughput and robustness of networks. In this paper, we propose a Reliable Braided Multipath Routing with Network Coding for underwater sensor networks (RBMR-NC). Disjoint multi-path algorithm is used to build independent actual paths, as called main paths. Some braided paths on each main path are built according to the braided multi-path algorithm, which are called logic paths. When a data packet is transmitted by these nodes, the nodes can employ network coding to encode packets coming from the same group in order to further reduce relativity among these packets, and enhance the probability of successful decoding at the sink node. Braided multi-path can make the main paths to be multiplexed to reduce the probability of long paths. This paper mainly employs successful delivery rate to evaluate RBMR-NC model with theoretical analysis and simulation methods. The results indicate that the proposed RBMR-NC protocol is valuable to enhance network reliability and to reduce system redundancy.
基金Sponsored by the National Science and Technology Major Project(Grant No. 2010ZX03005-003)
文摘Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Established routes frequently become stale, and existing communication flows are interrupted, incurring delay and additional overhead. In this paper we propose a novel hybrid routing protocol, which is the combined between of the table-driven routing and on-demand routing in VANET. It makes fast convergence in routing process, minimal drop links, making more reliable links, and adaptive with changing of VANET topology. With neighbor table is updated instantaneously, and using strong neighbor for routing process makes route discovery process start whenever it received requirement, and through using route mechanism appropriately it reduces significantly route overhead at each node. The simulation results illustrate the outstanding properties of our proposed routing protocol.
文摘In this paper we introduce a novel energy-aware routing protocol REPU (reliable, efficient with path update), which provides reliability and energy efficiency in data delivery. REPU utilizes the residual energy available in the nodes and the re-ceived signal strength of the nodes to identify the best possible route to the destination. Reliability is achieved by selecting a number of intermediate nodes as waypoints and the route is divided into smaller segments by the waypoints. One distinct ad-vantage of this model is that when a node on the route moves out or fails, instead of discarding the whole original route, only the two waypoint nodes of the broken segment are used to find a new path. REPU outperforms traditional schemes by establishing an energy-efficient path and also takes care of efficient route maintenance. Simulation results show that this routing scheme achieves much higher performance than the classical routing protocols, even in the presence of high node density, and overcomes simul-taneous packet forwarding.
基金This work is supported by Fundamental Research Funds for the Central Universities of China(328201911),C.G.(Chao Guo)the Open Project Program of National Engineering Laboratory for Agri-product Quality Traceability,C.G.(Chao Guo),Beijing Technology and Business University(BTBU)No.AQT-2018Y-B4,C.G.(Chao Guo)Higher Education Department of the Ministry of Education Industry-university Cooperative Education Project,C.G.(Chao Guo),and Education and Teaching Reform Project of Beijing Electronic and Technology Institute,C.G.(Chao Guo).
文摘Satellite networks have high requirements for security and data processing speed.In order to improve the reliability of the network,software-defined network(SDN)technology is introduced and a central controller is set in the network.Due to the characteristics of global perspective,control data separation,and centralized control of SDN,the idea of SDN is introduced to the design of the satellite network model.As a result,satellite nodes are only responsible for data transmission,while the maintenance of the links and the calculation of routes are implemented by the controller.For the massive LEO satellite network based on SDN,a state evaluation decision routing mechanism is proposed.The designed mechanism monitors the status of the entire network effectively and reduces the on-board load on the satellite network.The best routing decision is made under the comprehensive consideration of the current and historical status of each inter-satellite link between Low Earth Orbit(LEO)satellite network nodes.The calculation and storage requirements are controlled within a reasonable range.Based on the curve parameter transmission fuzzy encryption algorithm,a safe and reliable condition assessment decision routing mechanism(CADRM)is designed.It ensures that the personal information of the LEO satellite network can be transmitted safely and effectively.The experimental simulation results show the improvement of network throughput,the reduction of packet loss rate and the enhancing of network reliability.
基金supported by the Science and Technology Development Fund(No.037/2015/A1),Macao SAR,China
文摘The intelligent vehicle network uses advanced information technology to establish an efficient integrated vehicle transport system, which has received great attention in industry and academia, lnternet of Vehicles (loV) in an urban environment is operated in a wireless environment with high bit error rate and interference. In addition, the wireless link between vehicles is likely to be lost. All of this makes it an important challenge to provide reliable mobile routing in an urban traffic environment. In this paper, a reliable routing algorithm with network coding (RR_ NC) is proposed to solve the above problems. A routing node sequence is discovered in IoV from source to destination by multi-metric ant colony optimization algorithm (MACO), and then clusters are formed around every node in the sequence. By adding linear encoding into the transmission of data between vehicle's clusters, the RR_NC provides much more reliable transmission and can recover the original message in the event of disorder and loss of message. Simulations are taken under different scenarios, and the results prove that this novel algorithm can deliver the information more reliably between vehicles in real-time with lower data loss and communication overhead.
文摘A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.
文摘In WSNs’ applications, not only the reliable end-to-end communications are must be ensured, but also the reduction of energy consumption and the entire network’s lifetim e should be optimized. All of the above have become to be an important way to evaluate the performance of routing protocols. In this paper, an op-timization model for WSNs’ lifetime is firstly advanced. Secondly, the shortage of ETX based routing metric is solved with the help of the optimization model. Thirdly, an energy balanced routing metric is advanced which is called EBRM in this paper. The result of simulation in NS-2 shows that, the EBRM metric can not only prolong the network’s lifetime, but also can ensure the reliable end-to-end communication.
基金the National Natural Science Foundation of China,GrantNumbers(62272007,62001007)the Natural Science Foundation of Beijing,GrantNumbers(4234083,4212018)The authors also acknowledge the support from King Khalid University for funding this research through the Large Group Project under Grant Number RGP.2/373/45.
文摘Border Gateway Protocol(BGP)is a standard inter-domain routing protocol for the Internet that conveys network layer reachability information and establishes routes to different destinations.The BGP protocol exhibits security design defects,such as an unconditional trust mechanism and the default acceptance of BGP route announcements from peers by BGP neighboring nodes,easily triggering prefix hijacking,path forgery,route leakage,and other BGP security threats.Meanwhile,the traditional BGP security mechanism,relying on a public key infrastructure,faces issues like a single point of failure and a single point of trust.The decentralization,anti-tampering,and traceability advantages of blockchain offer new solution ideas for constructing secure and trusted inter-domain routing mechanisms.In this paper,we summarize the characteristics of BGP protocol in detail,sort out the BGP security threats and their causes.Additionally,we analyze the shortcomings of the traditional BGP security mechanism and comprehensively evaluate existing blockchain-based solutions to address the above problems and validate the reliability and effectiveness of blockchain-based BGP security methods in mitigating BGP security threats.Finally,we discuss the challenges posed by BGP security problems and outline prospects for future research.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University,Kingdom of Saudi Arabia for funding this workthrough General Research Project Under the grant number(RGP.1/262/42).
文摘Energy management and packet delivery rate are the important factors in ad hoc networks.It is the major network where nodes share the information without administration.Due to the mobility of nodes,maximum energy is spent on transmission of packets.Mostly energy is wasted on packet dropping and false route discovery.In this research work,Fuzzy Based Reliable Load Balanced Routing Approach(RLRA)is proposed to provide high energy efficiency and more network lifetime using optimal multicast route discovery mechanism.It contains three phases.In first phase,optimal multicast route discovery is initiated to resolve the link failures.In second phase,the link quality is estimated and set to threshold value to meet the requirements of high energy efficiency.In third phase,energy model is shown to obtain total energy of network after transmission of packets.A multicast routing is established Based on path reliability and fault tolerant calculation is done and integrated with multicast routing.The routes can withstand the malicious issues.Fuzzy decision model is integrated with propose protocol to decide the performance of network lifetime.The network simulation tool is used for evaluating the RLRA with existing schemes and performance of RLRA is good compared to others.
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
基金supported by the National Key Research and Development Program of China(No.2020YFB1806000)。
文摘The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.
文摘The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.
基金supported by NSFC project(grant No.61971359)Chongqing Municipal Key Laboratory of Institutions of Higher Education(grant No.cquptmct-202104)+1 种基金Fundamental Research Funds for the Central Universities,Sichuan Science and Technology Project(grant no.2021YFQ0053)State Key Laboratory of Rail Transit Engineering Informatization(FSDI).
文摘The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.
基金supported by Northern Border University,Arar,KSA,through the Project Number“NBU-FFR-2024-2248-02”.
文摘This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures.
文摘The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.
基金supported in part by the National Natural Science Foundation of China under Grants 62171154in part by the National Natural Science Foundation of Shandong Province under Grant ZR2020MF007+1 种基金in part by the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology under Grant 2018B030322004in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2023030。
文摘The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.
基金State Grid Corporation of China Science and Technology Project“Research andApplication of Key Technologies for Trusted Issuance and Security Control of Electronic Licenses for Power Business”(5700-202353318A-1-1-ZN).
文摘To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.
文摘One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.
基金supported by Fundamental Research Program of Shanxi Province(No.20210302123444)the Research Project at the College Level of China Institute of Labor Relations(No.23XYJS018)+2 种基金the ICH Digitalization and Multi-Source Information Fusion Fujian Provincial University Engineering Research Center 2022 Open Fund Project(G3-KF2207)the China University Industry University Research Innovation Fund(No.2021FNA02009)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘Currently,distributed routing protocols are constrained by offering a single path between any pair of nodes,thereby limiting the potential throughput and overall network performance.This approach not only restricts the flow of data but also makes the network susceptible to failures in case the primary path is disrupted.In contrast,routing protocols that leverage multiple paths within the network offer a more resilient and efficient solution.Multipath routing,as a fundamental concept,surpasses the limitations of traditional shortest path first protocols.It not only redirects traffic to unused resources,effectively mitigating network congestion,but also ensures load balancing across the network.This optimization significantly improves network utilization and boosts the overall performance,making it a widely recognized efficient method for enhancing network reliability.To further strengthen network resilience against failures,we introduce a routing scheme known as Multiple Nodes with at least Two Choices(MNTC).This innovative approach aims to significantly enhance network availability by providing each node with at least two routing choices.By doing so,it not only reduces the dependency on a single path but also creates redundant paths that can be utilized in case of failures,thereby enhancing the overall resilience of the network.To ensure the optimal placement of nodes,we propose three incremental deployment algorithms.These algorithms carefully select the most suitable set of nodes for deployment,taking into account various factors such as node connectivity,traffic patterns,and network topology.By deployingMNTCon a carefully chosen set of nodes,we can significantly enhance network reliability without the need for a complete overhaul of the existing infrastructure.We have conducted extensive evaluations of MNTC in diverse topological spaces,demonstrating its effectiveness in maintaining high network availability with minimal path stretch.The results are impressive,showing that even when implemented on just 60%of nodes,our incremental deployment method significantly boosts network availability.This underscores the potential of MNTC in enhancing network resilience and performance,making it a viable solution for modern networks facing increasing demands and complexities.The algorithms OSPF,TBFH,DC and LFC perform fast rerouting based on strict conditions,while MNTC is not restricted by these conditions.In five real network topologies,the average network availability ofMNTCis improved by 14.68%,6.28%,4.76%and 2.84%,respectively,compared with OSPF,TBFH,DC and LFC.