Notwithstanding the religious intention of billions of devotees,the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory ...Notwithstanding the religious intention of billions of devotees,the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Most attendees ignored preventive measures,namely maintaining physical distance,practising hand hygiene,and wearing facemasks.Wearing a face mask in public areas protects people from spreading COVID-19.Artificial intelligence(AI)based on deep learning(DL)and machine learning(ML)could assist in fighting covid-19 in several ways.This study introduces a new deep learning-based Face Mask Detection in Religious Mass Gathering(DLFMD-RMG)technique during the COVID-19 pandemic.The DLFMD-RMG technique focuses mainly on detecting face masks in a religious mass gathering.To accomplish this,the presented DLFMD-RMG technique undergoes two pre-processing levels:Bilateral Filtering(BF)and Contrast Enhancement.For face detection,the DLFMD-RMG technique uses YOLOv5 with a ResNet-50 detector.In addition,the face detection performance can be improved by the seeker optimization algorithm(SOA)for tuning the hyperparameter of the ResNet-50 module,showing the novelty of the work.At last,the faces with and without masks are classified using the Fuzzy Neural Network(FNN)model.The stimulation study of the DLFMD-RMG algorithm is examined on a benchmark dataset.The results highlighted the remarkable performance of the DLFMD-RMG model algorithm in other recent approaches.展开更多
基金This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia,under grant no.(HO:023-611-1443)The authors,therefore,gratefully acknowledge DSR technical and financial support。
文摘Notwithstanding the religious intention of billions of devotees,the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Most attendees ignored preventive measures,namely maintaining physical distance,practising hand hygiene,and wearing facemasks.Wearing a face mask in public areas protects people from spreading COVID-19.Artificial intelligence(AI)based on deep learning(DL)and machine learning(ML)could assist in fighting covid-19 in several ways.This study introduces a new deep learning-based Face Mask Detection in Religious Mass Gathering(DLFMD-RMG)technique during the COVID-19 pandemic.The DLFMD-RMG technique focuses mainly on detecting face masks in a religious mass gathering.To accomplish this,the presented DLFMD-RMG technique undergoes two pre-processing levels:Bilateral Filtering(BF)and Contrast Enhancement.For face detection,the DLFMD-RMG technique uses YOLOv5 with a ResNet-50 detector.In addition,the face detection performance can be improved by the seeker optimization algorithm(SOA)for tuning the hyperparameter of the ResNet-50 module,showing the novelty of the work.At last,the faces with and without masks are classified using the Fuzzy Neural Network(FNN)model.The stimulation study of the DLFMD-RMG algorithm is examined on a benchmark dataset.The results highlighted the remarkable performance of the DLFMD-RMG model algorithm in other recent approaches.