In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was t...In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker展开更多
This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solution...This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment(HT)at 200℃for 1.5 and 3 h,resulting in the in-situ synthesis of CaCO_(3)crystals inside the heat-treated wood.The filling effect was best at the concentration of 1.2 mol/L.CaCO_(3)was uniformly distributed in the cell cavities of the heat-treated wood,and some of the crystals were embedded in the fissures of the wood cell walls.The morphology of CaCO_(3)crystals was mainly spherical and rhombic polyhedral.Three main types of CaCO_(3)crystals were calcite,vaterite,and aragonite.The HT of poplar wood at 200℃resulted in degrading the chemical components of the wood cell wall.This degradation led to reduced wood mechanical properties,including the surface hardness(HD),modulus of rupture(MOR),and modulus of elasticity(MOE).After CaCO_(3)was in-situ synthesized in the heat-treated wood,the HD increased by 18.36%and 16.35%,and MOR increased by 14.64%and 8.89%,respectively.Because of the CaCO_(3)synthesization,the char residue of the 200℃heat-treated wood samples increased by 9.31%and the maximum weight loss rate decreased by 19.80%,indicating that the filling with CaCO_(3)cannot only improve the mechanical properties of the heat-treated wood but also effectively enhance its thermal stability.展开更多
In as-welded state,each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases.After the...In as-welded state,each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases.After the post-weld heat treatment,both the amount and the size of the eutectic structure orθphases decreased.Correspondingly,both the Cu content inα-Al matrix and the microhardness increased to a similar level in each region of the joint,and the tensile strength of the entire joint was greatly improved.Post-weld heat treatment played the role of solid solution strengthening and aging strengthening.After the post-weld heat treatment,the weld performance became similar to other regions,but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect.The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties,and the specimens randomly crack in the weld zone.展开更多
文摘In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker
基金funded by“Natural Science Foundation of Anhui Province,Grant No.2008085QC130”.
文摘This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate(CaCO_(3))crystals via an in-situ synthesis method.CaCl_(2)and Na 2CO_(3)solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment(HT)at 200℃for 1.5 and 3 h,resulting in the in-situ synthesis of CaCO_(3)crystals inside the heat-treated wood.The filling effect was best at the concentration of 1.2 mol/L.CaCO_(3)was uniformly distributed in the cell cavities of the heat-treated wood,and some of the crystals were embedded in the fissures of the wood cell walls.The morphology of CaCO_(3)crystals was mainly spherical and rhombic polyhedral.Three main types of CaCO_(3)crystals were calcite,vaterite,and aragonite.The HT of poplar wood at 200℃resulted in degrading the chemical components of the wood cell wall.This degradation led to reduced wood mechanical properties,including the surface hardness(HD),modulus of rupture(MOR),and modulus of elasticity(MOE).After CaCO_(3)was in-situ synthesized in the heat-treated wood,the HD increased by 18.36%and 16.35%,and MOR increased by 14.64%and 8.89%,respectively.Because of the CaCO_(3)synthesization,the char residue of the 200℃heat-treated wood samples increased by 9.31%and the maximum weight loss rate decreased by 19.80%,indicating that the filling with CaCO_(3)cannot only improve the mechanical properties of the heat-treated wood but also effectively enhance its thermal stability.
基金supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1637601)
文摘In as-welded state,each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases.After the post-weld heat treatment,both the amount and the size of the eutectic structure orθphases decreased.Correspondingly,both the Cu content inα-Al matrix and the microhardness increased to a similar level in each region of the joint,and the tensile strength of the entire joint was greatly improved.Post-weld heat treatment played the role of solid solution strengthening and aging strengthening.After the post-weld heat treatment,the weld performance became similar to other regions,but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect.The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties,and the specimens randomly crack in the weld zone.