期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
基于模态分解和神经网络的锂电池RUL预测
1
作者 胡鹏 成燕 +1 位作者 刘江 郑林弘 《电力电子技术》 2024年第5期44-47,68,共5页
为了准确地预测锂电池剩余使用寿命(RUL)的整体退化趋势和局部容量恢复现象,此处提出了一种将改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与卷积神经网络(CNN)和双向长短期记忆(BiLSTM)神经网络相融合的模型。首先选取电池容量数... 为了准确地预测锂电池剩余使用寿命(RUL)的整体退化趋势和局部容量恢复现象,此处提出了一种将改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与卷积神经网络(CNN)和双向长短期记忆(BiLSTM)神经网络相融合的模型。首先选取电池容量数据作为输入量,利用ICEEMDAN将本征模态分量和残余模态分量进行分离,然后根据两种分量的特征分别选取BiLSTM神经网络和CNN进行预测,最后将两者进行叠加得到预测结果。采用某机构数据集进行RUL预测实验,与单一模型进行对比实验。实验结果表明,基于模态分解的混合神经网络预测模型具有更高的稳定性和精确度;采用NASAPCoE数据集进行泛化性实验,验证了该模型在不同型号电池的RUL预测中都具有良好的准确性,可以被广泛使用。 展开更多
关键词 锂电池 剩余使用寿命 模态分解 神经网络
下载PDF
基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测
2
作者 刘斌 吉春霖 +2 位作者 曹丽君 武欣雅 段云凤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第15期167-177,共11页
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的... 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的锂离子电池剩余使用寿命预测方法。首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解。其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测。最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测。采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 Transformer网络 双向长短期记忆网络 完全集合经验模态分解
下载PDF
基于状态划分和集成学习的轴承剩余使用寿命预测模型
3
作者 胡志辉 王绪光 +2 位作者 王贡献 张腾 李帅琦 《机电工程》 CAS 北大核心 2024年第8期1423-1430,共8页
针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警... 针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警范围,结合连续触发机制自适应确定DST;然后,采用具有自适应噪声的完全集成经验模态分解(CEEMDAN)对退化阶段信号序列进行了自适应分解;最后,构建了集成学习模型,考虑分量的不同特性进行了多步滚动预测,融合预测结果得到了轴承RUL,采用滚动轴承XJTU-SY公开数据集进行了试验验证。研究结果表明:与基于长短时记忆神经网络(LSTM)、反向传播神经网络(BPNN)的预测方法相比,该方法预测结果的平均绝对误差分别降低了11.7%以及5.6%,相对均方根误差分别降低了12.2%以及10.7%,验证了该方法在轴承RUL预测中的有效性和优越性。 展开更多
关键词 滚动轴承剩余使用寿命 退化起始时间 自适应DST状态划分 集成学习模型 退化特征提取 具有自适应噪声的完全集成经验模态分解 长短时记忆神经网络
下载PDF
基于改进相关向量机的锂电池剩余使用寿命预测 被引量:1
4
作者 侯小康 袁裕鹏 童亮 《电源技术》 CAS 北大核心 2024年第2期289-298,共10页
精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行... 精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行滤波分解,并利用贝叶斯优化方法对相关参数进行优化,提出一种基于多核相关向量机的锂离子电池剩余使用寿命预测模型。利用美国国家航空航天局(NASA)和Oxford电池数据集对所提出的模型进行验证,研究结果表明:所提出的基于变分模态分解和贝叶斯优化的多核相关向量机(VMD-BAYES-HRVM)方法的预测性能不受预测起始点和截止电压的影响,预测结果准确性更高,95%置信区间的跨度更小,证明了所提出方法的有效性。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 贝叶斯优化 多核相关向量机
下载PDF
多尺度分解下GRU-TCN集成的动力电池剩余使用寿命预测方法
5
作者 刘佳 马志强 +2 位作者 刘广忱 高俊东 李宏勋 《储能科学与技术》 CAS CSCD 北大核心 2024年第3期1009-1018,共10页
精准预测动力电池的剩余使用寿命(remaining useful life,RUL)能够提前规避因电池过度使用带来的风险,为退役电池的二次利用提供决策依据,提升电池第二寿命的利用率。为了降低动力电池RUL预测任务中噪声和容量回升现象导致的非线性特征... 精准预测动力电池的剩余使用寿命(remaining useful life,RUL)能够提前规避因电池过度使用带来的风险,为退役电池的二次利用提供决策依据,提升电池第二寿命的利用率。为了降低动力电池RUL预测任务中噪声和容量回升现象导致的非线性特征对RUL预测精度的影响,提出了一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)、门控循环单元网络(gated recurrent unit,GRU)和时序卷积网络(temporal convolutional networks,TCN)集成的动力电池RUL预测模型。首先,使用EEMD对原始数据进行分解,动力电池容量衰退过程中由噪声和容量回升现象导致的非线性特征被分解到高频分量,而原始容量数据的主要趋势被分解到低频分量。其次,再使用GRU和TCN网络分别对高频分量和低频分量进行预测。最后,使用Attention对预测结果进行集成。在NASA数据集上的实验结果表明,本工作提出的集成模型的预测精度和对非线性特征的拟合程度都优于其他单一模型和其他同类型模型,最大平均绝对误差和最大均方根误差分别在0.52%和0.74%内,绝对误差在1个循环周期内,证明本模型有较好的RUL预测能力。 展开更多
关键词 动力电池 剩余使用寿命 经验模态分解 门控循环单元网络 时序卷积网络
下载PDF
基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测 被引量:2
6
作者 李英顺 阚宏达 +2 位作者 郭占男 王德彪 王铖 《电工技术学报》 EI CSCD 北大核心 2024年第10期3244-3258,共15页
锂离子电池的剩余使用寿命(RUL)是健康管理中重要参数,其准确评估对于保证电池设备的安全稳定运行非常重要。该文提出一种数据预处理联合变分模态分解(VMD)、长短期记忆网络(LSTM)和高斯回归过程(GPR)的预测框架。首先选取充放电循环过... 锂离子电池的剩余使用寿命(RUL)是健康管理中重要参数,其准确评估对于保证电池设备的安全稳定运行非常重要。该文提出一种数据预处理联合变分模态分解(VMD)、长短期记忆网络(LSTM)和高斯回归过程(GPR)的预测框架。首先选取充放电循环过程中的信息作为间接健康因子(HI),并通过核主元分析方法(KPCA)实现间接HI的特征提取,完成数据预处理;其次通过VMD-LSTM方法实现健康因子的分解、预测和重构,并将重构得到的数据应用于RUL预测的GPR模型,完成预测模型搭建;最后以NASA锂电池数据集作为算法测试数据,结果表明,所提取的健康因子能够准确跟踪锂电池的退化过程;所提预测方法能够准确地估计电池的剩余寿命,同时具有较高的可靠性和稳定性。 展开更多
关键词 锂离子电池 剩余寿命 健康因子 变分模态分解 高斯回归过程 长短期记忆
下载PDF
多角度基于CEEMDAN-CNN-BiLSTM模型的锂离子电池RUL预测
7
作者 郭喜峰 王凯泽 +2 位作者 单丹 郑迪 宁一 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期181-189,共9页
通过构建模型对锂离子电池剩余使用寿命进行预测,并探究温度及网络参数对所构建模型预测精准度的影响,进而提高模型的预测精准度。提出自适应噪声完全集合经验模态分解(CEEMDAN)和一维卷积神经网络(1D CNN)与双向长短期记忆(BiLSTM)神... 通过构建模型对锂离子电池剩余使用寿命进行预测,并探究温度及网络参数对所构建模型预测精准度的影响,进而提高模型的预测精准度。提出自适应噪声完全集合经验模态分解(CEEMDAN)和一维卷积神经网络(1D CNN)与双向长短期记忆(BiLSTM)神经网络相结合的锂离子电池剩余寿命预测方法。选取容量作为健康因子,然后利用CEEMDAN对复杂不平稳数据进行分解,得到稳定的分量。利用1D CNN对锂离子电池容量数据进行深度挖掘,最后利用双BiLSTM神经网络建模对锂离子电池剩余使用寿命(RUL)进行预测。采用NASA数据集和CALCE数据集进行测试,在不同温度与网络参数下进行预测效果对比,并与BiLSTM模型、SVR模型、CNN-BiLSTM模型进行预测对比。 展开更多
关键词 锂离子电池 剩余使用寿命 卷积神经网络 自适应噪声完全集合经验模态分解 双向长短期记忆神经网络
下载PDF
基于多尺度分解的LSTM-ARIMA锂电池寿命预测
8
作者 张意 汤文兵 张斌 《海南热带海洋学院学报》 2024年第2期59-68,共10页
锂电池剩余使用寿命(Remaining useful life,RUL)预测是锂电池研究的一个重要方向,通过对RUL的准确预测,可以更好地管理和维护电池,延长电池使用寿命。为了能够准确预测锂电池的RUL,提出了一种集合变分模态分解(Variational mode decomp... 锂电池剩余使用寿命(Remaining useful life,RUL)预测是锂电池研究的一个重要方向,通过对RUL的准确预测,可以更好地管理和维护电池,延长电池使用寿命。为了能够准确预测锂电池的RUL,提出了一种集合变分模态分解(Variational mode decomposition,VMD)、长短时记忆网络(Long short-term memory,LSTM)和自回归移动平均模型(Autoregressive integrated moving average,ARIMA)相结合的锂电池RUL预测模型。该模型首先采用VMD算法将NASA锂电池数据集中的容量数据分解为多个高频分量和低频分量,以此减少容量数据中的噪声干扰,然后针对各个分量的特点,分别利用LSTM和ARIMA对分解所得的高频分量和低频分量建立预测子模型,最后将各个子模型的预测值进行叠加重构得到锂电池的RUL结果。实验结果表明VMD-LSTM-ARIMA预测模型相比于其他预测模型,该模型具有较好的锂电池RUL预测能力。并在CALCE锂电池数据集上进行了泛化性实验,结果表明该模型适用于不同电池RUL预测任务。 展开更多
关键词 锂电池 剩余寿命预测 变分模态分解 长短时记忆网络 自回归移动平均模型
下载PDF
基于自适应VMD和DD-cCycleGAN的滚动轴承剩余寿命预测
9
作者 于军 赵坤 +1 位作者 张帅 邓四二 《振动与冲击》 EI CSCD 北大核心 2024年第13期45-52,共8页
为准确预测强噪声干扰小样本情况下的滚动轴承剩余寿命(remaining useful life, RUL),提出一种基于自适应变分模态分解(variational mode decomposition, VMD)和双判别器条件循环一致对抗网络(double-discriminator conditional CycleGA... 为准确预测强噪声干扰小样本情况下的滚动轴承剩余寿命(remaining useful life, RUL),提出一种基于自适应变分模态分解(variational mode decomposition, VMD)和双判别器条件循环一致对抗网络(double-discriminator conditional CycleGAN, DD-cCycleGAN)的滚动轴承RUL预测方法。将黑猩猩优化算法(chimp optimization algorithm, ChOA)与VMD相结合,给出一种基于ChOA的自适应VMD算法,选取有效模态分量进行重构,降低强背景噪声的干扰;开发一种DD-cCycleGAN生成新样本,这些生成的新样本不但保留了源域的样本信息,还与目标域的样本相似;将训练样本的重构样本和生成的新样本作为输入,训练长短时记忆(long short-term memory, LSTM)网络,用训练后的LSTM网络预测测试样本中滚动轴承的RUL。通过采用XJTU-SY滚动轴承加速寿命试验数据集验证该方法的有效性,试验结果表明该方法具有较强的抗噪能力和较高的轴承RUL预测精度。 展开更多
关键词 滚动轴承 剩余寿命(RUL)预测 自适应变分模态分解(VMD) 双判别器条件循环一致对抗网络 黑猩猩优化算法(ChOA)
下载PDF
基于VMD和Bat-KELM的仿真变电站蓄电池剩余寿命预测
10
作者 任罡 季宁 +3 位作者 胡晓丽 李世倩 张洁华 吴祎 《电源学报》 CSCD 北大核心 2024年第4期251-259,共9页
仿真变电站蓄电池的工作模式呈现间歇非连续性,导致电池性能在退化过程中存在容量再生现象,退化规律具有非平稳性和随机性,增大了蓄电池精确剩余寿命RUL(remaining useful life)的难度。针对存在容量再生现象的蓄电池剩余寿命预测问题,... 仿真变电站蓄电池的工作模式呈现间歇非连续性,导致电池性能在退化过程中存在容量再生现象,退化规律具有非平稳性和随机性,增大了蓄电池精确剩余寿命RUL(remaining useful life)的难度。针对存在容量再生现象的蓄电池剩余寿命预测问题,提出了变分模态分解VMD(variational mode decomposition)和蝙蝠(Bat)优化核极限学习机KELM(kernel extreme learning machine)组合的预测方法。基于VMD将蓄电池健康状态SOH(state of health)时间序列分解为整体退化分量和容量再生分量;利用Bat优化KELM构建各分量预测模型,以提高分量趋势预测精度;通过各分量独立预测结果的叠加,得到精确的蓄电池健康状态及剩余寿命预测值。将该方法应用于蓄电池退化数据实例分析中,结果表明该方法相较于KELM模型及VMD-KELM模型,预测精度更高,验证了该方法的优越性。 展开更多
关键词 仿真变电站 蓄电池 剩余寿命预测 变分模态分解 核极限学习机
下载PDF
基于多尺度TCN的锂离子电池RUL预测
11
作者 彭鹏 万民惠 +3 位作者 张领先 陈满 谭启鹏 李勇琦 《电池》 CAS 北大核心 2024年第5期649-654,共6页
为降低容量回升和噪声对锂离子电池剩余使用寿命(RUL)预测的影响,提出利用运行数据和容量数据的时序信息,基于多尺度时序卷积网络(TCN)的RUL联合预测方法。使用变分模态分解(VMD)法分解锂离子电池原始容量数据,将衰减过程中的非线性特... 为降低容量回升和噪声对锂离子电池剩余使用寿命(RUL)预测的影响,提出利用运行数据和容量数据的时序信息,基于多尺度时序卷积网络(TCN)的RUL联合预测方法。使用变分模态分解(VMD)法分解锂离子电池原始容量数据,将衰减过程中的非线性特征和主要衰减趋势分别分解到高频分量和低频分量;针对高频分量,使用多尺度TCN进行滚动迭代预测,以捕获容量的短期变化;针对低频分量,从运行数据中提取特征,输入多尺度TCN进行预测,以捕获容量的长期趋势;最后,将预测结果还原为容量预测值。基于美国航空航天局(NASA)数据集验证的结果表明,该方法的容量预测误差均方根误差(RMSE)最小值为0.0111,相应的平均绝对误差(MAE)最小值为0.0086,RUL预测误差基本在2次循环以内。 展开更多
关键词 锂离子电池 剩余使用寿命(RUL) 联合预测 变分模态分解 多尺度时序卷积网络(TCN)
下载PDF
基于IPIO-VME与ConvNeXt-Encoder-GRU的轴承剩余寿命预测
12
作者 黄博昊 董红涛 +3 位作者 赵晖 卫若茜 陈敬川 何澳 《机电工程》 CAS 北大核心 2024年第4期570-582,共13页
基于振动信号的轴承剩余寿命(RUL)预测在工业安全生产中具有重要意义,但该领域目前存在着模型构建难度较高、预测精度较低的问题;为完成自适应的特征模态提取和去噪工作,简化模型构建过程,提升预测效果,提出了基于改进鸽群算法的变分模... 基于振动信号的轴承剩余寿命(RUL)预测在工业安全生产中具有重要意义,但该领域目前存在着模型构建难度较高、预测精度较低的问题;为完成自适应的特征模态提取和去噪工作,简化模型构建过程,提升预测效果,提出了基于改进鸽群算法的变分模态提取(IPIO-VME)算法和基于ConvNeXt-Encoder-门控循环单元(GRU)的轴承剩余寿命预测方法。首先,鸽群算法高效准确,适用于VME的参数选择,但容易陷入局部最优,因此利用自适应惯性权重、收缩包围机制、莱维飞行等方法对鸽群算法进行了改进,以提高收敛速度和全局收敛能力;然后,为实现自适应的模态提取目的,设计了IPIO-VME算法的目标函数,能够针对VME算法和轴承振动信号的特点,有效提取轴承振动特征;最后,针对模型构建繁琐、精度低的问题,提出了ConvNeXt-Encoder-GRU模型,采用间隔与连续采样的数据集构建方法,并使用联合振动数据和特征曲线的方法进行了寿命预测模型的构建,通过ConvNeXt模块提取振动特征,然后使用Transformer的Encoder模块提取趋势特征,并利用GRU进行了融合;还对该算法和预测模型进行了实验对比验证。研究结果表明:改进鸽群算法具有更快的收敛速度和更好的全局收敛能力,在测试函数下,经过1000次迭代,其精度最高能达到1.23×10-9;ConvNeXt-Encoder-GRU模型具备较高预测准确性,在西安交通大学-长兴昇阳科技有限公司(XJTU-SY)轴承数据集上的LogCosh指标可以达到0.0013,优于单一模型。该研究结果对轴承的故障特征提取和剩余寿命预测研究具有一定的指导意义。 展开更多
关键词 滚动轴承 剩余使用寿命预测 改进鸽群算法 变分模态提取 ConvNeXt 门控循环单元
下载PDF
基于医疗设备关键零部件技术保障模型的医院手术室设备管理路径研究 被引量:11
13
作者 陈晓晴 王翔 +2 位作者 李丽 郑双峰 朱斌 《中国医学装备》 2023年第3期141-145,共5页
目的:基于医院手术室设备关键零部件技术保障模型,为手术室设备预防性维护(PM)提供理论依据。方法:基于支持向量机算法构建医院手术室设备关键零部件技术保障模型,进行手术室设备关键零部件寿命预测,根据其关键零部件性能退化情况开展... 目的:基于医院手术室设备关键零部件技术保障模型,为手术室设备预防性维护(PM)提供理论依据。方法:基于支持向量机算法构建医院手术室设备关键零部件技术保障模型,进行手术室设备关键零部件寿命预测,根据其关键零部件性能退化情况开展设备技术保障管理。选取医院中心手术室在用的98台医疗设备及其217个关键零部件,按照设备管理方法不同将采用PM管理模式的手术室设备临床使用资料纳入对照组,采用关键零部件技术保障模式的手术室设备临床使用资料纳入观察组。对比两组10台设备管理过程中的评测值与预测值的相关性和临床运行质量。结果:观察组10台设备关键零部件性能退化较为平缓,与寿命预期呈高度相关(r>0.8),对照组10台设备关键零部件性能退化波动较大,与寿命预期呈中度相关,r值为0.5~0.8;观察组设备开机率、质量检测合格率和维护操作规范率分别为(98.08±1.05)%、(92.71±4.75)%和(89.82±4.13)%,均高于对照组,故障频次为(1.09±0.39)次/年,低于对照组,组间差异有统计学意义(t=5.442,t=2.834,t=5.378,t=3.861;P<0.05)。结论:医疗设备关键零部件技术保障模式的运用可准确预测医院手术室设备关键零部件的剩余寿命,控制关键零部件退化期的波动性,提升手术室设备临床运行质量。 展开更多
关键词 关键零部件 技术保障模式 手术室设备 支持向量机 性能退化 剩余寿命
下载PDF
多尺度分解下GRU-MLR组合的锂电池剩余使用寿命预测方法 被引量:1
14
作者 武明虎 岳程鹏 +4 位作者 张凡 李俊晓 黄伟 胡胜 唐靓 《储能科学与技术》 CAS CSCD 北大核心 2023年第7期2220-2228,共9页
准确预测锂电池的剩余使用寿命(remaining useful life,RUL)可以及时了解电池内部的性能退化情况,降低电池的使用风险并为日常维护提供可靠的理论依据。为了提高预测结果的准确性和稳定性,提出了一种基于集合经验模态分解(ensemble empi... 准确预测锂电池的剩余使用寿命(remaining useful life,RUL)可以及时了解电池内部的性能退化情况,降低电池的使用风险并为日常维护提供可靠的理论依据。为了提高预测结果的准确性和稳定性,提出了一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)、门控循环单元网络(gated recurrent unit,GRU)和多元线性回归(multiple linear regression,MLR)相结合的锂电池RUL预测模型。该模型首先采用EEMD算法将锂电池容量数据分解为若干个高频分量和低频分量,以此减少容量数据中的噪声干扰,然后针对各个分量的特点,分别利用GRU和MLR网络基于获得的高频和低频序列建立预测子模型,最后叠加融合各个子模型的预测值得到锂电池的RUL结果,通过使用NASA和Oxford提供的锂电池公开数据,并采用不同的预测起点与其他单一模型和组合模型进行对比。实验结果表明,EEMD-GRU-MLR预测模型能够提供准确的RUL结果,相比于LSTM、GRU和EEMD-GRU预测模型,最大平均绝对误差分别降低了0.0311、0.0234、0.0182,最大均方根误差分别降低了0.0235、0.0153、0.0098,证明了本模型具有较好的锂电池RUL预测能力。 展开更多
关键词 锂电池 剩余使用寿命 集合经验模态分解 门控循环单元网络 多元线性回归
下载PDF
基于VMD和DAIPSO-GPR解决容量再生现象的锂离子电池寿命预测研究 被引量:3
15
作者 刘金凤 陈浩玮 HERBERT Ho-Ching Iu 《电子与信息学报》 EI CSCD 北大核心 2023年第3期1111-1120,共10页
锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型... 锂离子电池应用时表现出的时变、动态、非线性等特征,以及容量再生现象,导致传统模型对锂离子电池剩余使用寿命(RUL)预测的准确性低,该文将变分模态分解(VMD)和高斯过程回归(GPR)以及动态自适应免疫粒子群(DAIPSO)结合,建立RUL预测模型。首先利用等压降放电时间分析法,提取健康因子,利用VMD对其进行分解处理,挖掘数据内在信息,降低数据复杂度,并针对不同分量,利用不同协方差函数建立GPR预测模型,有效捕获了数据的长期下降趋势和短期再生波动。利用DAIPSO算法优化GPR模型,实现核函数超参数的优化,建立了更准确的退化关系模型,最终实现剩余使用寿命的准确预测,以及不确定性表征。最后利用NASA电池数据进行验证,离线预测结果表明所提方法具有较高预测精度和泛化适应能力。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 高斯过程回归 动态自适应免疫粒子群
下载PDF
缝洞型油藏剩余油类型及其动用方式研究 被引量:1
16
作者 张世亮 《广东石油化工学院学报》 2023年第3期13-16,21,共5页
塔河油田缝洞型油藏已进入中高含水开发阶段,受构造断裂和多期岩溶缝洞控制,储层非均质性强、井洞关系差异大,导致对剩余油的分布模式认识不清。针对上述问题,基于地震静态资料、钻完井资料和生产动态资料,开展了储层定量化研究,结果显... 塔河油田缝洞型油藏已进入中高含水开发阶段,受构造断裂和多期岩溶缝洞控制,储层非均质性强、井洞关系差异大,导致对剩余油的分布模式认识不清。针对上述问题,基于地震静态资料、钻完井资料和生产动态资料,开展了储层定量化研究,结果显示剩余油分布受重力分异作用、渗流阻力屏蔽和井间压差差异影响,基于岩溶地质特征、缝洞关系综合分析,提出了利于矿场挖潜的剩余油分布模式,制定了以注气、堵水、酸压为主的挖潜思路。 展开更多
关键词 缝洞型油藏 井洞关系 剩余油 动用方式
下载PDF
基于SSA-VMD-GRU的锂电池剩余寿命预测方法研究 被引量:3
17
作者 丁德邻 张营 左洪福 《电子元件与材料》 CAS 北大核心 2023年第9期1071-1078,共8页
锂离子电池性能在衰退过程中呈现非平稳性和非线性,寿命预测往往被再生容量所干扰,衰退趋势难以捕捉,进而影响寿命预测。针对该问题,以容量为特征,构建一种基于麻雀搜索算法优化变分模态分解和门控循环单元的锂离子电池寿命预测方法。首... 锂离子电池性能在衰退过程中呈现非平稳性和非线性,寿命预测往往被再生容量所干扰,衰退趋势难以捕捉,进而影响寿命预测。针对该问题,以容量为特征,构建一种基于麻雀搜索算法优化变分模态分解和门控循环单元的锂离子电池寿命预测方法。首先,利用麻雀搜索算法优化了变分模态分解的分解层数和惩罚因子,再通过优化了的变分模态分解算法将锂电池容量分解为若干分量,最后引入门控循环单元预测所分解的若干分量,将若干预测结果进行集成。通过NASA电池数据集对所提方法进行验证,并与两种模型相比较,结果表明,该方法相较于另两种方法预测精度平均提升了60%。 展开更多
关键词 锂电池 变分模态分解 麻雀搜索算法 门控循环单元 剩余寿命预测
下载PDF
基于集成经验模态分解与集成机器学习的锂离子电池剩余使用寿命预测方法 被引量:7
18
作者 张朝龙 赵筛筛 何怡刚 《电力系统保护与控制》 EI CSCD 北大核心 2023年第13期177-186,共10页
准确预测储能锂离子电池剩余使用寿命(remaining useful life,RUL)对于电力系统的安全性与可靠性至关重要。针对锂离子电池老化轨迹呈现非线性变化的问题,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和... 准确预测储能锂离子电池剩余使用寿命(remaining useful life,RUL)对于电力系统的安全性与可靠性至关重要。针对锂离子电池老化轨迹呈现非线性变化的问题,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和集成机器学习的锂离子电池剩余使用寿命预测方法。首先,利用集成经验模态分解算法分解锂离子电池老化数据。其次,分别利用集成的长短时记忆神经网络与相关向量机对分解得到的残差数据序列和本征模态数据序列建模预测。最后,融合预测的残差数据序列和本征模态数据序列,综合计算锂离子电池未来寿命老化轨迹。采用储能锂离子电池老化数据进行验证,结果显示所提出的锂离子电池RUL预测方法具有更好的鲁棒性与非线性跟踪能力。 展开更多
关键词 锂离子电池 剩余使用寿命预测 集成经验模态分解 相关向量机算法 长短时记忆神经网络
下载PDF
基于改进集成经验模态分解和高斯过程回归的锂离子电池剩余容量及寿命预测方法 被引量:9
19
作者 向铭 何怡刚 张慧 《电测与仪表》 北大核心 2023年第9期27-33,共7页
锂离子电池在储能电站中为消纳可再生能源作出了重要贡献,其运行的稳定性和可靠性受到了研究人员的持续关注。为了解决锂离子电池容量及剩余寿命的预测和抑制测量过程中因各种外界因素引起的噪声,提出了一种基于改进的集成经验模态分解M... 锂离子电池在储能电站中为消纳可再生能源作出了重要贡献,其运行的稳定性和可靠性受到了研究人员的持续关注。为了解决锂离子电池容量及剩余寿命的预测和抑制测量过程中因各种外界因素引起的噪声,提出了一种基于改进的集成经验模态分解MEEMD(Modified Ensemble Empirical Mode Decomposition)去噪和经贝叶斯优化的高斯过程回归BO-GPR(Gaussian process regression optimized by Bayesian optimization algorithm)的锂离子电池容量及剩余寿命预测方法。利用MEEMD方法识别并去除原始测量数据中的噪声分量。利用BO-GPR方法预测锂离子电池容量及剩余寿命,其中贝叶斯优化方法对高斯过程回归的部分超参数进行了进一步寻优。文章基于美国国家航空航天局研究中心提供的锂离子电池测量数据进行了预测实验,结果表明,该方法能够有效去除噪声信号,选取的协方差函数和超参数组合达成的预测效果优于初始GPR模型,证明了其有效性。 展开更多
关键词 锂离子电池 容量及剩余寿命 改进的集成经验模态分解 高斯过程回归 贝叶斯优化
下载PDF
基于CEEMD-AKF的锂电池剩余使用寿命预测方法 被引量:2
20
作者 陈翔 夏飞 《哈尔滨理工大学学报》 CAS 北大核心 2023年第3期28-36,共9页
针对锂离子电池剩余使用寿命(RUL)预测存在建模复杂、预测误差大等问题,提出一种基于CEEMD-AKF的锂电池RUL预测方法。首先,基于补充的总体平均经验模态分解(CEEMD)将电池历史容量分解为固有模态函数(IMFs)及余项,并基于排列熵(PE)与均... 针对锂离子电池剩余使用寿命(RUL)预测存在建模复杂、预测误差大等问题,提出一种基于CEEMD-AKF的锂电池RUL预测方法。首先,基于补充的总体平均经验模态分解(CEEMD)将电池历史容量分解为固有模态函数(IMFs)及余项,并基于排列熵(PE)与均方根误差(RMSE)建立最优低通滤波器,以此消除原始容量的随机性波动与噪声。其次,自适应卡尔曼滤波(AKF)用于更新自回归(AR)模型参数。最后,基于蒙特卡洛(MC)模拟得到概率密度函数(PDF),用于评估RUL预测结果的不确定性。通过在NASA测试数据上进行试验分析,结果表明CEEMD-AKF方法既能够降低建模复杂性,又能够有效地提高RUL预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命 自回归模型 排列熵 蒙特卡洛模拟
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部