To overcome disadvantages of traditional worst-case execution time (WCET) analysis approaches, we propose a new WCET analysis approach based on independent paths for ARM programs. Based on the results of program flo...To overcome disadvantages of traditional worst-case execution time (WCET) analysis approaches, we propose a new WCET analysis approach based on independent paths for ARM programs. Based on the results of program flow analysis, it reduces and partitions the control flow graph of the program and obtains a directed graph. Using linear combinations of independent paths of the directed graph, a set of feasible paths can be generated that gives complete coverage in terms of the program paths considered. Their timing measurements and execution counts of program segments are derived from a limited number of measurements of an instrumented version of the program. After the timing measurement of the feasible paths are linearly expressed by the execution times of program seg-ments, a system of equations is derived as a constraint problem, from which we can obtain the execution times of program segments. By assigning the execution times of program segments to weights of edges in the directed graph, the WCET estimate can be calculated on the basis of graph-theoretical techniques. Comparing our WCET estimate with the WCET measurement obtained by the exhaustive measurement, the maximum error ratio is only 8.259 3 %. It is shown that the proposed approach is an effective way to obtain the safe and tight WCET estimate for ARM programs.展开更多
Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardwar...Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardware system.This literature review focuses on calculating WCET for multi-core processors,providing a survey of traditional methods used for static and dynamic analysis and highlighting the major challenges that arise from different program execution scenarios on multi-core platforms.This paper outlines the strengths and weaknesses of current methodologies and offers insights into prospective areas of research on multi-core analysis.By presenting a comprehensive analysis of the current state of research on multi-core processor analysis for WCET estimation,this review aims to serve as a valuable resource for researchers and practitioners in the field.展开更多
Worst-case execution time (WCET) analysis of multi-threaded software is still a challenge. This comes mainly from the fact that synchronization has to be taken into account. In this paper, we focus on this issue and o...Worst-case execution time (WCET) analysis of multi-threaded software is still a challenge. This comes mainly from the fact that synchronization has to be taken into account. In this paper, we focus on this issue and on automatically calculating and incorporating stalling times (e.g. caused by lock contention) in a generic graph model. The idea that thread interleavings can be studied with a matrix calculus is novel in this research area. Our sparse matrix representations of the program are manipulated using an extended Kronecker algebra. The resulting graph represents multi-threaded programs similar as CFGs do for sequential programs. With this graph model, we are able to calculate the WCET of multi-threaded concurrent programs including stalling times which are due to synchronization. We employ a generating function-based approach for setting up data flow equations which are solved by well-known elimination-based dataflow analysis methods or an off-the-shelf equation solver. The WCET of multi-threaded programs can finally be calculated with a non-linear function solver.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program,2009AA011705)the National Natural Science Foundation of China(60903033)
文摘To overcome disadvantages of traditional worst-case execution time (WCET) analysis approaches, we propose a new WCET analysis approach based on independent paths for ARM programs. Based on the results of program flow analysis, it reduces and partitions the control flow graph of the program and obtains a directed graph. Using linear combinations of independent paths of the directed graph, a set of feasible paths can be generated that gives complete coverage in terms of the program paths considered. Their timing measurements and execution counts of program segments are derived from a limited number of measurements of an instrumented version of the program. After the timing measurement of the feasible paths are linearly expressed by the execution times of program seg-ments, a system of equations is derived as a constraint problem, from which we can obtain the execution times of program segments. By assigning the execution times of program segments to weights of edges in the directed graph, the WCET estimate can be calculated on the basis of graph-theoretical techniques. Comparing our WCET estimate with the WCET measurement obtained by the exhaustive measurement, the maximum error ratio is only 8.259 3 %. It is shown that the proposed approach is an effective way to obtain the safe and tight WCET estimate for ARM programs.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.2022ZTE09.
文摘Real-time system timing analysis is crucial for estimating the worst-case execution time(WCET)of a program.To achieve this,static or dynamic analysis methods are used,along with targeted modeling of the actual hardware system.This literature review focuses on calculating WCET for multi-core processors,providing a survey of traditional methods used for static and dynamic analysis and highlighting the major challenges that arise from different program execution scenarios on multi-core platforms.This paper outlines the strengths and weaknesses of current methodologies and offers insights into prospective areas of research on multi-core analysis.By presenting a comprehensive analysis of the current state of research on multi-core processor analysis for WCET estimation,this review aims to serve as a valuable resource for researchers and practitioners in the field.
文摘Worst-case execution time (WCET) analysis of multi-threaded software is still a challenge. This comes mainly from the fact that synchronization has to be taken into account. In this paper, we focus on this issue and on automatically calculating and incorporating stalling times (e.g. caused by lock contention) in a generic graph model. The idea that thread interleavings can be studied with a matrix calculus is novel in this research area. Our sparse matrix representations of the program are manipulated using an extended Kronecker algebra. The resulting graph represents multi-threaded programs similar as CFGs do for sequential programs. With this graph model, we are able to calculate the WCET of multi-threaded concurrent programs including stalling times which are due to synchronization. We employ a generating function-based approach for setting up data flow equations which are solved by well-known elimination-based dataflow analysis methods or an off-the-shelf equation solver. The WCET of multi-threaded programs can finally be calculated with a non-linear function solver.