In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic pro...In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic properties. Here we present a single frequency modulation method based on a torsion pendulum to measure the remanent magnetic moment mr of 1.1 kg dummy copper test mass, and the measurement result is(6.45 ± 0.04(stat) ± 0.07(syst)) × 10^(-8)A · m^(2). The measurement precision of the mr is about 0.9 n A · m^(2), well below the present measurement requirement of Tian Qin. The method is particularly useful for measuring extremely low magnetic properties of the materials for use in the construction of space-borne gravitational wave detection and other precision scientific apparatus.展开更多
The source of long-wavelength aeromagnetic anomalies appears to originate from the earth's deep crust. Constrained by previous studies on geochemical, petrologic analysis, the eclogite and serpentinized peridoti...The source of long-wavelength aeromagnetic anomalies appears to originate from the earth's deep crust. Constrained by previous studies on geochemical, petrologic analysis, the eclogite and serpentinized peridotite samples from drill hole ZK703 at Donghai in the western Sulu ultrahigh-pressure (UHP) terrane, East China, were unambiguously exhumed from the lower crust and the upper mantle, providing significant information about the magnetic properties of rocks at a deeper part of the crust. Results show that the serpentinization process favors the neoformation of nearly stoichiometric magnetite, resulting in the enhancement of its magnetization up to 8.6 A/m, which is sufficient enough to contribute to some magnetic anomalies. In contrast, eclogite samples have only weaker magnetization (generally less than 0.05 A/m) compared to serpentinized peridotite. Nevertheless, experiments under the lower crustal conditions are necessary to further support these conclusions.展开更多
CHAMP high-quality vector magnetometer observations collected from July 2000 to September 2010 have been used to map the residual vector magnetic anomaly fields. This field is so called the lithospheric magnetic field...CHAMP high-quality vector magnetometer observations collected from July 2000 to September 2010 have been used to map the residual vector magnetic anomaly fields. This field is so called the lithospheric magnetic field which is the result of two contributions of the induced and the remanent magnetization. It is therefore essential to study the magnetic properties of the crustal rocks. Isolating this field from the other contributions, interpreting and even defining are however difficult and still debated. We investigate how to identify and separate the lithospheric vector magnetic field ΔX, ΔY and ΔZ from other contributions. For this purpose we use selected night magnetic data from which we remove a model field of degree 16 and external model field of degree 2 developed by spherical harmonics analysis. Concerning the induced lithospheric field which is assumed to be aligned with the internal dipole was also removed. To minimize the secular variation effects, we calculated internal models for each two months. The method developed here has been successfully applied to isolate lithospheric field produced by remanent magnetizations from CHAMP satellite data. The resolution and altitude measurements make it very hard to map short wavelength crustal magnetic anomalies. The large-scale strong magnetic anomalies detected using this technique are in agreement with previous global magnetic maps. These anomalies appear with an amplitude of about 10 nT at satellite altitude such as Bangui’s anomaly.展开更多
We demonstrate a method for quickly and automatically detecting all three components of a remanent magnetic field around a shielded spin-exchange relaxation-free(SERF)atomic magnetometer(AM)using the trisection algori...We demonstrate a method for quickly and automatically detecting all three components of a remanent magnetic field around a shielded spin-exchange relaxation-free(SERF)atomic magnetometer(AM)using the trisection algorithm(TSA)for zero-field resonance(ZFR).To satisfy the measurement of AMs,a resonance light of the ^(87)Rb D1 line with a spectral width of less than 1 MHz is converted to circular polarization by a linear polarizer and a quarter-wave plate.After the light beam has passed through the alkali metal vapor cell,the residual magnetic field can be measured by searching for triaxial ZFR optical peaks.The TSA stably reduces the measurement time to 2.41 s on average and improves the measurement accuracy,significantly outpacing existing methods.The weighted averages of all measurements with corresponding uncertainties are(–15.437±0.022)nT,(6.062±0.021)nT,and(–14.158±0.052)nT on the x-,y-,and z-axes,respectively.These improvements could facilitate more extremely weak magnetic studies in real time,such as magnetoencephalography(MEG)and magnetocardiography(MCG)measurements.展开更多
Spinel ferrites exhibit exceptional magnetic properties,making them a distinctive class of magnetic materials.The sol-gel technique was utilized for the synthesis of spinel ferrites with the chemical formula Co_(0.6)S...Spinel ferrites exhibit exceptional magnetic properties,making them a distinctive class of magnetic materials.The sol-gel technique was utilized for the synthesis of spinel ferrites with the chemical formula Co_(0.6)Sr_(0.4)Ce_(x)Fe_(2-x)O_(4). Following that,a comprehensive X-ray diffraction analysis unveiled the crystalline cubic structure of the synthesized materials.Through the utilization of the M-H loop approach,the ferromagnetic attributes of ferrites were assessed,and the assimilation of rare earth elements led to substantial enhancements in saturation magnetization,remanence,and coercivity.Spinel ferrites with a high concentration of rare earth elements have improved direct current resistivity and activation energy.The logarithm of a material's resistance increased from 5.29 to 8.12 Ω·cm as cerium is added.With a change in the amount of cerium,the activation energy goes up from 0.19 to 0.29.By changing the frequency from 5.5 to 9.5 GHz,the dielectric characteristics were determined.As the frequency goes up,the dielectric constant goes down.Spinel ferrites that have been made better in every way can be used in high-frequency applications.展开更多
基金supported by the National Key R&D Program of China (Grant No. 2020YFC2200500)the National Natural Science Foundation of China (Grant Nos. 12075325, 12005308, and 11605065)。
文摘In Tian Qin spaceborne gravitational-wave detectors, the stringent requirements on the magnetic cleanliness of the test masses demand the high resolution ground-based characterization measurement of their magnetic properties. Here we present a single frequency modulation method based on a torsion pendulum to measure the remanent magnetic moment mr of 1.1 kg dummy copper test mass, and the measurement result is(6.45 ± 0.04(stat) ± 0.07(syst)) × 10^(-8)A · m^(2). The measurement precision of the mr is about 0.9 n A · m^(2), well below the present measurement requirement of Tian Qin. The method is particularly useful for measuring extremely low magnetic properties of the materials for use in the construction of space-borne gravitational wave detection and other precision scientific apparatus.
文摘The source of long-wavelength aeromagnetic anomalies appears to originate from the earth's deep crust. Constrained by previous studies on geochemical, petrologic analysis, the eclogite and serpentinized peridotite samples from drill hole ZK703 at Donghai in the western Sulu ultrahigh-pressure (UHP) terrane, East China, were unambiguously exhumed from the lower crust and the upper mantle, providing significant information about the magnetic properties of rocks at a deeper part of the crust. Results show that the serpentinization process favors the neoformation of nearly stoichiometric magnetite, resulting in the enhancement of its magnetization up to 8.6 A/m, which is sufficient enough to contribute to some magnetic anomalies. In contrast, eclogite samples have only weaker magnetization (generally less than 0.05 A/m) compared to serpentinized peridotite. Nevertheless, experiments under the lower crustal conditions are necessary to further support these conclusions.
文摘CHAMP high-quality vector magnetometer observations collected from July 2000 to September 2010 have been used to map the residual vector magnetic anomaly fields. This field is so called the lithospheric magnetic field which is the result of two contributions of the induced and the remanent magnetization. It is therefore essential to study the magnetic properties of the crustal rocks. Isolating this field from the other contributions, interpreting and even defining are however difficult and still debated. We investigate how to identify and separate the lithospheric vector magnetic field ΔX, ΔY and ΔZ from other contributions. For this purpose we use selected night magnetic data from which we remove a model field of degree 16 and external model field of degree 2 developed by spherical harmonics analysis. Concerning the induced lithospheric field which is assumed to be aligned with the internal dipole was also removed. To minimize the secular variation effects, we calculated internal models for each two months. The method developed here has been successfully applied to isolate lithospheric field produced by remanent magnetizations from CHAMP satellite data. The resolution and altitude measurements make it very hard to map short wavelength crustal magnetic anomalies. The large-scale strong magnetic anomalies detected using this technique are in agreement with previous global magnetic maps. These anomalies appear with an amplitude of about 10 nT at satellite altitude such as Bangui’s anomaly.
基金This work was supported by Beijing Natural Science Foundation(Grant No.4191002)Key Research&Development Program of Zhejiang,China(Grant No.2020C01037)+1 种基金the National Key Research&Development Program of China(Grant No.2018YFB2002405)the National Natural Science Foundation of China(Grant No.62073014).
文摘We demonstrate a method for quickly and automatically detecting all three components of a remanent magnetic field around a shielded spin-exchange relaxation-free(SERF)atomic magnetometer(AM)using the trisection algorithm(TSA)for zero-field resonance(ZFR).To satisfy the measurement of AMs,a resonance light of the ^(87)Rb D1 line with a spectral width of less than 1 MHz is converted to circular polarization by a linear polarizer and a quarter-wave plate.After the light beam has passed through the alkali metal vapor cell,the residual magnetic field can be measured by searching for triaxial ZFR optical peaks.The TSA stably reduces the measurement time to 2.41 s on average and improves the measurement accuracy,significantly outpacing existing methods.The weighted averages of all measurements with corresponding uncertainties are(–15.437±0.022)nT,(6.062±0.021)nT,and(–14.158±0.052)nT on the x-,y-,and z-axes,respectively.These improvements could facilitate more extremely weak magnetic studies in real time,such as magnetoencephalography(MEG)and magnetocardiography(MCG)measurements.
基金the Deanship of Scientific Research at King Khalid University for funding this work through the large group research project under grant number (RGP2/82/44)。
文摘Spinel ferrites exhibit exceptional magnetic properties,making them a distinctive class of magnetic materials.The sol-gel technique was utilized for the synthesis of spinel ferrites with the chemical formula Co_(0.6)Sr_(0.4)Ce_(x)Fe_(2-x)O_(4). Following that,a comprehensive X-ray diffraction analysis unveiled the crystalline cubic structure of the synthesized materials.Through the utilization of the M-H loop approach,the ferromagnetic attributes of ferrites were assessed,and the assimilation of rare earth elements led to substantial enhancements in saturation magnetization,remanence,and coercivity.Spinel ferrites with a high concentration of rare earth elements have improved direct current resistivity and activation energy.The logarithm of a material's resistance increased from 5.29 to 8.12 Ω·cm as cerium is added.With a change in the amount of cerium,the activation energy goes up from 0.19 to 0.29.By changing the frequency from 5.5 to 9.5 GHz,the dielectric characteristics were determined.As the frequency goes up,the dielectric constant goes down.Spinel ferrites that have been made better in every way can be used in high-frequency applications.