An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network tec...An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.展开更多
Remote monitoring of tools for prediction of tool wear in cutting processes was considered, and a method of implementation of a remote-monitoring system previously developed was proposed. Sensor signals were received ...Remote monitoring of tools for prediction of tool wear in cutting processes was considered, and a method of implementation of a remote-monitoring system previously developed was proposed. Sensor signals were received and tool wear was predicted in the local system using an ART2 algorithm, while the monitoring result was transferred to the remote system via intemet. The monitoring system was installed at an on-site machine tool for monitoring three kinds of tools cutting titanium alloys, and the tool wear was evaluated on the basis of vigilances, similarities between vibration signals received and the normal patterns previously trained. A number of experiments were carried out to evaluate the performance of the proposed system, and the results show that the wears of finishing-cut tools are successfully detected when the moving average vigilance becomes lower than the critical vigilance, thus the appropriate tool replacement time is notified before the breakage.展开更多
In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of ...In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.展开更多
Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in...Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection.展开更多
Paddy rice is one of the most important crops in the world.Accurate estimation and monitoring of paddy rice phenology is necessary for management and yield prediction.Remotely sensed time-series data are essential for...Paddy rice is one of the most important crops in the world.Accurate estimation and monitoring of paddy rice phenology is necessary for management and yield prediction.Remotely sensed time-series data are essential for estimation of crop phenology stages across large areas.Here,the paddy rice phenological stages(i.e.,transplanting,tillering,heading,and harvesting)were detected in Jiangxi Province,China.A comparison study was conducted using ground observation data from 10 agricultural meteorological stations,collected between 2006 and 2008.The phenological stages were detected using Moderate Resolution Imaging Spectroradiometer(MODIS)time-series enhanced vegetation index(EVI)data.Savitzky-Golay filter and wavelet transform were used to reduce the noise in the time-series EVI data and reconstruct the smoothed EVI time-series profile.Key phenological stages of double-cropping rice were detected using the characteristics of the smoothed EVI profile.The root mean square errors(RMSEs)for each stage were ±10 days around the ground observation data.The results suggest that Savitzky-Golay filter and wavelet transform are promising approaches for reconstructing high-quality EVI time-series data.Moreover,the phenological stages of double-cropping rice could be detected using time-series MODIS EVI data smoothed by Savitzky-Golay filter and wavelet transform.展开更多
文摘An introduction is made to the composition, design method and engineering application of a remote real time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.
基金supported by Changwon National University in 2009-2010
文摘Remote monitoring of tools for prediction of tool wear in cutting processes was considered, and a method of implementation of a remote-monitoring system previously developed was proposed. Sensor signals were received and tool wear was predicted in the local system using an ART2 algorithm, while the monitoring result was transferred to the remote system via intemet. The monitoring system was installed at an on-site machine tool for monitoring three kinds of tools cutting titanium alloys, and the tool wear was evaluated on the basis of vigilances, similarities between vibration signals received and the normal patterns previously trained. A number of experiments were carried out to evaluate the performance of the proposed system, and the results show that the wears of finishing-cut tools are successfully detected when the moving average vigilance becomes lower than the critical vigilance, thus the appropriate tool replacement time is notified before the breakage.
文摘In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.
基金supported by the National Natural Science Foundation of China (41471335, 41271407)the National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010, China (STSN-1500)+2 种基金the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD05B03)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050601)the International Science and Technology (S&T) Cooperation Program of China (2012DFG22050)
文摘Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection.
基金supported by China’s Special Funds for Major State Basic Research Project(2013CB733405)the Fundamental Research Funds for the Central Universities(ZYGX2012J153 and ZYGX2012Z005)+1 种基金the Open Fund of the State Key Laboratory of Remote Sensing Science(OFSLRSS201408)the National Natural Science Foundation of China(40801130).
文摘Paddy rice is one of the most important crops in the world.Accurate estimation and monitoring of paddy rice phenology is necessary for management and yield prediction.Remotely sensed time-series data are essential for estimation of crop phenology stages across large areas.Here,the paddy rice phenological stages(i.e.,transplanting,tillering,heading,and harvesting)were detected in Jiangxi Province,China.A comparison study was conducted using ground observation data from 10 agricultural meteorological stations,collected between 2006 and 2008.The phenological stages were detected using Moderate Resolution Imaging Spectroradiometer(MODIS)time-series enhanced vegetation index(EVI)data.Savitzky-Golay filter and wavelet transform were used to reduce the noise in the time-series EVI data and reconstruct the smoothed EVI time-series profile.Key phenological stages of double-cropping rice were detected using the characteristics of the smoothed EVI profile.The root mean square errors(RMSEs)for each stage were ±10 days around the ground observation data.The results suggest that Savitzky-Golay filter and wavelet transform are promising approaches for reconstructing high-quality EVI time-series data.Moreover,the phenological stages of double-cropping rice could be detected using time-series MODIS EVI data smoothed by Savitzky-Golay filter and wavelet transform.