The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(S...The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.展开更多
Information on rice phenology is essential for yield estimation and crop management. To test the ability of remote sensing in detecting multiple phenological stages, paddy rice canopy spectrum was measured by a hand-h...Information on rice phenology is essential for yield estimation and crop management. To test the ability of remote sensing in detecting multiple phenological stages, paddy rice canopy spectrum was measured by a hand-held radiometer. Normalized difference vegetation index (NDVI) was calculated from spectrum, and the slope of NDVI was obtained as its difference. We evaluated the response of NDVI and its slope to rice growth with a comparison of two late-season rice cultivars. The results showed that NDVI and its slope curves had distinct variation corresponding to rice development and they could be used as cultivar-independent phenological indicators. The dates of flooding and transplanting, tillering, panicle development, heading and flowering, maturity, harvest stages, and even field management practices, could be deduced from these indicators. ‘NDVI ≤ 0’ could be used as a single threshold for the detection of flooding and transplanting. The largest spike in the curve of the NDVI slope indicated the duration of tillering stage. The next spike corresponded to panicle development. The heading and flowering stage was characterized by the maximum NDVI and the change of NDVI slope from positive to negative. At the maturity stage, NDVI decreased continuously, and its slope fluctuated just below zero. When rice grains were completely mature and ready for harvest, NDVI decline was accelerated. At harvest, NDVI slope reached its minimum value. The distinction between heading and maturity stages was obscure, most likely due to NDVI saturation at high biomass. The study might provide references for paddy rice phenology determination through remote sensing images.展开更多
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2012AA092301the Public Science and Technology Research Funds Projects of Ocean under contract No.20155014+1 种基金the National Key Technology Research and Development Program of China under contract No.2013BAD13B01the Innovation Program of Shanghai Municipal Education Commissionof China under contract No.14ZZ147
文摘The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.
基金supported by the Jiangsu Key Laboratory of Agricultural Meteorology,China(Grant No.JKLAM201203)the National Science and Technology Planning Project in Rural Areas during the ‘Twelfth Five-Year Plan Period’(Grant No.2011BAD32B01)the Six Great Talents Peak Plan of Jiangsu,China(Grant No.NY-038)
文摘Information on rice phenology is essential for yield estimation and crop management. To test the ability of remote sensing in detecting multiple phenological stages, paddy rice canopy spectrum was measured by a hand-held radiometer. Normalized difference vegetation index (NDVI) was calculated from spectrum, and the slope of NDVI was obtained as its difference. We evaluated the response of NDVI and its slope to rice growth with a comparison of two late-season rice cultivars. The results showed that NDVI and its slope curves had distinct variation corresponding to rice development and they could be used as cultivar-independent phenological indicators. The dates of flooding and transplanting, tillering, panicle development, heading and flowering, maturity, harvest stages, and even field management practices, could be deduced from these indicators. ‘NDVI ≤ 0’ could be used as a single threshold for the detection of flooding and transplanting. The largest spike in the curve of the NDVI slope indicated the duration of tillering stage. The next spike corresponded to panicle development. The heading and flowering stage was characterized by the maximum NDVI and the change of NDVI slope from positive to negative. At the maturity stage, NDVI decreased continuously, and its slope fluctuated just below zero. When rice grains were completely mature and ready for harvest, NDVI decline was accelerated. At harvest, NDVI slope reached its minimum value. The distinction between heading and maturity stages was obscure, most likely due to NDVI saturation at high biomass. The study might provide references for paddy rice phenology determination through remote sensing images.